• J. Heart Lung Transplant. · Nov 2005

    Development of a reliable automatic speed control system for rotary blood pumps.

    • Michael Vollkron, Heinrich Schima, Leopold Huber, Robert Benkowski, Gino Morello, and Georg Wieselthaler.
    • Department of Cardiothoracic Surgery and Ludwig Boltzmann Institute for Cardiosurgical Research, Medical University of Vienna, Vienna, Austria. michael.vollkron@meduniwien.ac.at
    • J. Heart Lung Transplant. 2005 Nov 1;24(11):1878-85.

    BackgroundAxial blood pumps have been very successfully introduced into the arena of prolonged clinical support. However, they do not offer inherent load-responsive mechanisms for adjusting pumping performance to venous return and changes in physiologic requirements of the patient. To provide for these adjustments we developed an algorithm for demand-responsive pump control based on a reliable suction detection system.MethodsA PC-based system that analyzes pump performance based on available flow, heart rate and short-term performance history was developed. The physician defines levels of "desired flow" at rest and during exercise, depending on heart rate. In case this desired flow cannot be maintained due to limited venous return, the maximal available flow level is determined from an analysis of the actual pump data (flow, speed and power consumption). An expert system continuously checks the flow signal for any indication of suction. Periodic speed variations then adapt pump performance to the patient's condition.ResultsFirst, stability and functionality were proven under various settings in vitro. The algorithms were then tested in 15 patients in intensive care, in the standard ward, and during bicycle exercise. The system reacted properly to demand changes, at exercise level, in response to coughing and at various Valsalva maneuvers. Suction could also be successfully prevented during severe arrhythmia and in patients with critical cardiac geometry. Exercise tests showed decreases in pulmonary arterial pressure (-22 +/- 9.9%) and pulmonary capillary wedge pressure (-42 +/- 18.54%), and an increase in pump flow (19 +/- 9.5%) and workload (8 +/- 6.1%), all when compared with constant-speed pumping.ConclusionsA closed-loop control system equipped with an expert system for reliable suction detection was developed that improves response to change in venous return for rotary pump recipients. The system was robust, stable and safe under a wide range of everyday living conditions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…