• Pediatr Crit Care Me · Mar 2004

    Inhaled nitric oxide results in deteriorating hemodynamics when administered during cardiopulmonary bypass in neonatal swine.

    • Christopher L Hubble, Ira M Cheifetz, Damian M Craig, George Quick, Jon N Meliones, and Reese H Clark.
    • Department of Pediatrics, Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA.
    • Pediatr Crit Care Me. 2004 Mar 1;5(2):157-62.

    ObjectiveTo evaluate if inhaled nitric oxide (iNO) has a lung-protective effect when it is delivered during the ischemic phase of neonatal cardiopulmonary bypass (CPB).DesignProspective, randomized, controlled study.SettingSurgical research laboratory in a university hospital.SubjectsThirty-five neonatal swine.InterventionsOne-week-old swine (2.1-3.4 kg) were exposed to cool, low-flow CPB bypass designed to mimic the bypass used during neonatal congenital heart repair. Animals were randomized to four groups: a) CPB without exposure to iNO (n = 9); b) iNO delivery only during CPB with discontinuation of iNO at the start of reperfusion (n = 7); c) iNO delivery both during CPB and during the 90-min post-CPB observation period (n = 7); and d) iNO delivery only after separation from CPB (n = 7). Each animal was placed on nonpulsatile CPB and cooled to a nasopharyngeal temperature of 18 degrees C (64 degrees F). Low-flow CPB (35 mL.kg(-1).min(-1)) was instituted for 90 mins. The blood flow then was returned to 100 mL.kg(-1).min(-1), and the animals were warmed to 36 degrees C (96.8 degrees F) before separation from CPB. Animals were followed 90 mins post-CPB. Lung tissue was harvested and evaluated for myeloperoxidase activity, wet/dry weight, and lung pathology. Five animals underwent sham protocol, receiving instrumentation but not exposure to CPB or iNO.Measurements And Main ResultsWe measured pulmonary vascular resistance, right ventricular output, and pulmonary artery pressure in all animals at 30, 60, and 90 mins following separation from CPB. Study animals that received iNO during the ischemic period of CPB were not protected against CPB-induced lung injury. Those animals treated with iNO both during and after CPB trended worse than those receiving iNO only after CPB. Inhaled nitric oxide delivered only after separation from CPB improved the hemodynamic variables compared with all other groups. Differences in lung wet/dry weight, myeloperoxidase, and pathology were not significantly different among groups.ConclusionsThe delivery of iNO during the ischemic period of CPB does not protect against CPB-induced lung injury in a neonatal piglet CPB model. Delivery of iNO during this phase of CPB may, in fact, worsen the post-CPB hemodynamic condition. Inhaled nitric oxide should be used with caution during periods of low pulmonary blood flow CPB. Inhaled nitric oxide remains effective for reducing pulmonary vascular resistance after CPB.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.