• Brain research · Feb 2004

    Comparative Study

    Morphine- and cocaine-induced c-Fos levels in Lewis and Fischer rat strains.

    • Sheri D Grabus, John R Glowa, and Anthony L Riley.
    • Psychopharmacology Laboratory, Department of Psychology, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, USA.
    • Brain Res. 2004 Feb 13;998(1):20-8.

    AbstractLewis (LEW) and Fischer 344 (F344) rat strains have been reported to differ in their sensitivity to the rewarding and aversive effects of both cocaine and morphine. Specifically, LEW rats self-administer morphine and cocaine to a greater extent than F344 rats, while LEW (compared to F344) rats are more sensitive to the aversive effects of cocaine but less sensitive to the aversive effects of morphine. Consistent with assessments of the rewarding effects of morphine and cocaine in these two strains, LEW rats have lower basal, and generally higher drug-induced, activity in brain regions associated with reward. Although the brain areas that mediate the aversive effects of drugs are becoming better defined, no studies have compared the activation of these areas by aversion-inducing drugs in the LEW and F344 strains. As such, the relationship between the ability of drugs to activate these aversion-associated brain areas and to induce a conditioned taste aversion (CTA) in these strains is unknown. To explore this relationship, LEW and F344 rats were injected with saline or doses of morphine or cocaine (32 mg/kg for both drugs) that have been shown to generate differential taste aversion learning in these strains. All animals were subsequently tested for c-Fos expression in areas of the brain associated with aversion learning (the lateral and medial parabrachial nucleus, intermediate and caudal nucleus tractus solitarius and area postrema), reward (the shell of the nucleus accumbens) and locomotion (the core of the nucleus accumbens and the caudate putamen). The present results indicated that patterns of morphine- and cocaine-induced c-Fos within CTA-associated, but not reward- or locomotor-associated, brain regions paralleled the differential behavioral sensitivities of LEW and F344 rats to these drugs within CTA learning. Analyses with other drugs that do and do not induce aversions differentially would further assess the role of these brain areas in aversion learning, in general, and in strain-dependent differences, in particular.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…