• J. Cardiovasc. Electrophysiol. · Nov 2001

    Case Reports Comparative Study

    Evidence for a single nucleotide polymorphism in the KCNQ1 potassium channel that underlies susceptibility to life-threatening arrhythmias.

    • T Kubota, M Horie, M Takano, H Yoshida, K Takenaka, E Watanabe, T Tsuchiya, H Otani, and S Sasayama.
    • Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Japan.
    • J. Cardiovasc. Electrophysiol. 2001 Nov 1;12(11):1223-9.

    IntroductionCongenital long QT syndrome (LQTS) is a genetically heterogeneous arrhythmogenic disorder caused by mutations in at least five different genes encoding cardiac ion channels. It was suggested recently that common polymorphisms of LQTS-associated genes might modify arrhythmia susceptibility in potential gene carriers.Methods And ResultsWe examined the known LQTS genes in 95 patients with definitive or suspected LQTS. Exon-specific polymerase chain reaction single-strand conformation polymorphism and direct sequence analyses identified six patients who carried only a single nucleotide polymorphism in KCNQ1 that is found in approximately 11% of the Japanese population. This 1727G>A substitution that changes the sense of its coding sequence from glycine to serine at position 643 (G643S) was mostly associated with a milder phenotype, often precipitated by hypokalemia and bradyarrhythmias. When heterologously examined by voltage-clamp experiments, the in vitro cellular phenotype caused by the single nucleotide polymorphism revealed that G643S-KCNQ1 forms functional homomultimeric channels, producing a significantly smaller current than that of the wild-type (WT) channels. Coexpression of WT-KCNQ1 and G643S-KCNQ1 with KCNE1 resulted in approximately 30% reduction in the slow delayed rectifier K+ current I(Ks) without much alteration in the kinetic properties except its deactivation process, suggesting that the G643S substitution had a weaker dominant-negative effect on the heteromultimeric channel complexes.ConclusionWe demonstrate that a common polymorphism in the KCNQ1 potassium channel could be a molecular basis for mild I(Ks) dysfunction that, in the presence of appropriate precipitating factors, might predispose potential gene carriers to life-threatening arrhythmias in a specific population.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.