• Pediatr Crit Care Me · Nov 2008

    Gas exchange and lung mechanics during high frequency ventilation in the perflubron-treated lung.

    • Gerhard K Wolf, Padraig Sheeran, David Heitz, John E Thompson, and John H Arnold.
    • Division of Critical Care Medicine, Department of Anesthesia, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA. gerhard.wolf@childrens.harvard.edu
    • Pediatr Crit Care Me. 2008 Nov 1; 9 (6): 641-6.

    ObjectiveTo identify the effect of perflubron on gas exchange and lung mechanics during high frequency oscillatory ventilation in an animal model.DesignProspective randomized animal trial.SubjectsEighteen Yorkshire swine.InterventionsThree groups of six animals each were investigated: control (high frequency oscillatory ventilation alone), low dose perflubron (high frequency oscillatory ventilation plus perfluoro-octyl bromide [PFOB]-Lo, 1.5 mL/kg), and high dose perflubron (high frequency oscillatory ventilation plus PFOB-Hi, 3 mL/kg). Lung injury was induced with repeated saline lavage and amplified for 1 hr using large tidal volumes. Perflubron (Alliance, CA) or a sham dose (room air) was administered with bronchoscopic guidance. The animals were transitioned to high frequency oscillatory ventilation starting at a mean airway pressure of 15 cm H2O. Mean airway pressure was increased (inflation phase) by 5 cm H2O every 15 mins to a maximum mean airway pressure of 40 cm H2O. During the deflation phase, mean airway pressure was reduced by 5 cm H2O every 15 mins to a mean airway pressure of 15 cm H2O.Measurements And Main ResultsOxygenation was improved and pulmonary shunt fraction was reduced for PFOB-Hi compared with the control group only at a mean airway pressure of 15 and 20 cm H2O. At a maximal mean airway pressure of 40 cm H2O, oxygenation was not different between the groups, but pulmonary artery pressures were elevated in both PFOB-groups compared with the control group. During the deflation phase, oxygenation, pulmonary shunt fraction, and pulmonary artery pressures were adversely affected by PFOB-Hi and PFOB-Lo.ConclusionsAlthough PFOB-Hi compared with the control group improved oxygenation and reduced pulmonary shunt fraction only during the first pressure steps of a formal stepwise recruitment maneuver during high frequency oscillatory ventilation, this effect was not sustained during maximal recruitment. During the deflation phase, both PFOB groups were associated with worse gas exchange compared with the control group. PFOB also produced significant pulmonary hypertension in comparison with the control group.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.