• Exp Brain Res · Oct 2005

    Functional significance of delay-period activity of primate prefrontal neurons in relation to spatial working memory and reward/omission-of-reward expectancy.

    • Masataka Watanabe, Kazuo Hikosaka, Masamichi Sakagami, and Shu-Ichiro Shirakawa.
    • Department of Psychology, Tokyo Metropolitan Institute for Neuroscience, Musashidai 2-6, Fuchu, Tokyo, 183-8526, Japan. masataka@tmin.ac.jp
    • Exp Brain Res. 2005 Oct 1;166(2):263-76.

    AbstractThe lateral prefrontal cortex (LPFC) is important in cognitive control. During the delay period of a working memory (WM) task, primate LPFC neurons show sustained activity that is related to retaining task-relevant cognitive information in WM. However, it has not yet been determined whether LPFC delay neurons are concerned exclusively with the cognitive control of WM task performance. Recent studies have indicated that LPFC neurons also show reward and/or omission-of-reward expectancy-related delay activity, while the functional relationship between WM-related and reward/omission-of-reward expectancy-related delay activity remains unclear. To clarify the functional significance of LPFC delay-period activity for WM task performance, and particularly the functional relationship between these two types of activity, we examined individual delay neurons in the primate LPFC during spatial WM (delayed response) and non-WM (reward-no-reward delayed reaction) tasks. We found significant interactions between these two types of delay activity. The majority of the reward expectancy-related neurons and the minority of the omission-of-reward expectancy-related neurons were involved in spatial WM processes. Spatial WM-related neurons were more likely to be involved in reward expectancy than in omission-of-reward expectancy. In addition, LPFC delay neurons observed during the delayed response task were not concerned exclusively with the cognitive control of task performance; some were related to reward/omission-of-reward expectancy but not to WM, and many showed more memory-related activity for preferred rewards than for less-desirable rewards. Since employing a more preferred reward induced better task performance in the monkeys, as well as enhanced WM-related neuronal activity in the LPFC, the principal function of the LPFC appears to be the integration of cognitive and motivational operations in guiding the organism to obtain a reward more effectively.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…