• Der Anaesthesist · Nov 1995

    [A new two-chamber model for examination and demonstration of transdural fluid leakage after spinal anesthesia].

    • D Enk and E Enk.
    • Klinik und Poliklinik für Anästhesiologie und operative Intensivmedizin, Westfälischen Wilhelms-Universität Münster.
    • Anaesthesist. 1995 Nov 1; 44 (11): 761-9.

    UnlabelledVarious in vitro models have been introduced for comparative examinations of post-dural-puncture trauma and measurement of liquor leakage through puncture sites. These models allow simulation of subarachnoid, but not of peridural, pressure. A new two-chamber-model realizes the simulation of both subarachnoid and peridural pressure and allows observation of in vitro punctures with video-documentation. Frame grabbing and (computer-aided) image analysis show new aspects of spinal puncture effects. Therefore, post-dural-puncture trauma and retraction can be objectively visualized by this method, which has not previously been demonstrated.MethodsTwo-chamber-model consists of two short aluminium cylinders. Native human dura patches (8X8 mm) from fresh cadavers are put (correctly oriented) between two special polyamide seals. Mounted between the upper and lower cylinder, these seals stretch the dura patch, which remains flexible and even in all directions. After filling of the lower (subarachnoid) and upper (peridural) chamber with Ringer lactate solution, positive or negative physiological pressure can be adjusted by way of two (Ringer lactate solution filled) infusion lines in each chamber. Puncturing is performed at an angle of 57 degrees to the dura. The model allows examination with epi-illumination and transmitted (polarized) light. In vitro punctures are observed through an inverted camera lens with an CCD-Hi8 video camera (Canon UC1HI) looking into the peridural chamber and documented by means of an S-VHS video recorder (Panasonic NV-FS200EG). After true-colour frame grabbing by a video digitizer (Fast Screen Machine II), single video frames can be optimized and analysed with a 486-66 MHz computer and conventional software (Corel Draw 3.0, Photostyler 1.1a, DDL Aequitas 1.00b). Punctures demonstrated in this paper have been done under simulation of a transdural gradient of 20 cm water similar to the situation of a recumbent patient (15 cm water in the subarachnoid and -5 cm water in the peridural chamber). The punctures were followed by short-time observation for up to 10 minutes.ResultsBy making it possible to obtains a picture of the puncture site at 20-ms intervals (because of the PAL norm of 50 half-frames/s), video-documentation has become accepted as superior to conventional photography. When the Ringer lactate solution in the subarachnoid chamber is stained with methylene blue, transdural leakage can easily be observed. The result of this documentation technique demonstrate that not dural puncture can be atraumatic, when a 29-G Quincke needle is used. Calculation on the difference between a digitized video frame before and after the puncture clearly illustrates the dural trauma. Owing to their non-cutting tip, as expected, pencil-point needles leave diffuse changes across the dura patch, whereas a more local trauma was observed after puncturing with cutting-tip needles. The same computer calculation between two video frames allows examination of post-puncture-dural retraction of the puncture site. In this connection, we found that relevant dural retraction is a phenomenon limited to the first minute after puncture. Thin spinal needles with so-called modern tips (e.g. Whitacre, Atraucan) can minimize the post-dural-puncture trauma, whereas thicker, conventional, spinal needles (Quincke) leave considerable dural defects.ConclusionsThe two-chamber-model presented allows easy simulation of physiological subarachnoid and peridural pressure. The Ringer lactate solution in the subarachnoid chamber corresponds to the liquor, whereas that in the peridural chamber corresponds to the intercellular (peridural) space. The tension of the dural patch between the polyamide seals is similar to the situation in an anotomical model observed by spinaloscopy (in an earlier study). With the video documentation and computer-aided analysis technique introduced, dural trauma and retraction of the puncture site can be examined and demo

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.