• Anesthesia and analgesia · Feb 2010

    Inhibition of human alpha4beta2 neuronal nicotinic acetylcholine receptors by volatile aromatic anesthetics depends on drug hydrophobicity.

    • Ken Solt, Elizabeth W Kelly, Joseph F Cotten, and Douglas E Raines.
    • Department of Anaesthesia, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ksolt@partners.or
    • Anesth. Analg. 2010 Feb 1;110(2):455-60.

    BackgroundVolatile aromatic compounds such as benzene are general anesthetics that cause amnesia, hypnosis, and immobility in response to noxious stimuli when inhaled. Although these compounds are not used clinically, they are frequently found in commercial items such as solvents and household cleaning products and are abused as inhalant drugs. Volatile aromatic anesthetics are useful pharmacological tools for probing the relationship between chemical structure and drug activity at putative general anesthetic targets. Neuronal nicotinic acetylcholine (nACh) receptors are ligand-gated ion channels widely expressed in the brain, which are thought to play important roles in learning and memory. In this study, we tested the hypothesis that aromatic anesthetics reversibly inhibit alpha(4)beta(2) neuronal nACh receptor function and sought to determine the structural correlates of receptor inhibition.MethodsElectrophysiological techniques were used to quantify the effects of 8 volatile aromatic anesthetics on currents elicited by 1 mM ACh and mediated by human alpha(4)beta(2) nACh receptors expressed in Xenopus oocytes.ResultsAll of the volatile aromatic anesthetics used in this study reversibly inhibited alpha(4)beta(2) nACh receptors with IC(50) values ranging from 0.00091 atm for 1,2-difluorobenzene to 0.045 atm for hexafluorobenzene. With the exception of hexafluorobenzene, all of the compounds had IC(50) values less than minimum alveolar concentration. Inhibitory potency correlated poorly with the cation-pi binding energies of the compounds (r(2) = 0.48, P = 0.059). However, there was a good correlation between inhibitory potency and the octanol/gas partition coefficient (r(2) = 0.87, P = 0.0008).ConclusionsVolatile aromatic anesthetics potently and reversibly inhibit human alpha(4)beta(2) neuronal nACh receptors. This inhibition may play a role in producing amnesia. In contrast to N-methyl-d-aspartate receptors, the inhibitory potencies of aromatic anesthetics for alpha(4)beta(2) neuronal nACh receptors seem to be dependent on drug hydrophobicity rather than electrostatic properties. This implies that the volatile aromatic anesthetic binding site in the alpha(4)beta(2) neuronal nACh receptor is hydrophobic in character and differs from the nature of the binding site in N-methyl-D-aspartate receptors.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.