• J. Am. Coll. Surg. · Sep 2011

    Missing data and interpretation of cancer surgery outcomes at the American College of Surgeons National Surgical Quality Improvement Program.

    • Helen M Parsons, William G Henderson, Jeanette Y Ziegenfuss, Michael Davern, and Waddah B Al-Refaie.
    • University of Minnesota and Minneapolis Veteran Affairs Medical Center, Minneapolis, MN, USA.
    • J. Am. Coll. Surg. 2011 Sep 1;213(3):379-91.

    BackgroundThe American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) has become an important surgical quality program in the United States, yet few studies describe their methods for handling missing data. Our study examines the impact of missing data on predictive models for short-term operative outcomes after cancer surgery in the ACS NSQIP database.Study DesignWe identified 97,230 patients who underwent oncologic resections for neoplasms in the 2005-2009 ACS NSQIP. We used multivariable logistic regression to assess the impact of pre-, intra-, and postoperative factors on short-term operative outcomes by type of procedure where missing values were included as a variable category, excluded, and imputed.ResultsA large proportion (72.8%) of patients had one or more missing pre-, intra-, or postoperative characteristics, particularly preoperative laboratory values. Missing data were more frequent in healthier patients and those undergoing lower-risk procedures. Although data were not missing at random, the impact of preoperative risk factors on adverse operative outcomes after cancer surgery was similar across methods for handling missing data. However, analytic approaches using only patients with complete or imputed information risk basing the analysis on a potentially nonrepresentative sample.ConclusionsMissing data present challenges to interpreting predictors of short-term operative outcomes after cancer surgery at ACS NSQIP hospitals. Similar to best practices for other data sets, this study highlights the importance of using missing values carefully when using ACS NSQIP. Given its potential to introduce bias, the approach to handling missing values should be detailed in future ACS NSQIP studies.Published by Elsevier Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…