• Respiratory care · Aug 2014

    Algorithms to estimate PaCO2 and pH using non invasive parameters for children with Hypoxemic Respiratory Failure.

    • Robinder G Khemani, E Busra Celikkaya, Christian R Shelton, Dave Kale, Patrick A Ross, Randall C Wetzel, and Christopher J L Newth.
    • Respir Care. 2014 Aug 1;59(8):1248-57.

    BackgroundVentilator management for children with hypoxemic respiratory failure may benefit from ventilator protocols, which rely on blood gases. Accurate noninvasive estimates for pH or P(aCO2) could allow frequent ventilator changes to optimize lung-protective ventilation strategies. If these models are highly accurate, they can facilitate the development of closed-loop ventilator systems. We sought to develop and test algorithms for estimating pH and P(aCO2) from measures of ventilator support, pulse oximetry, and end-tidal carbon dioxide pressure (P(ETCO2)). We also sought to determine whether surrogates for changes in dead space can improve prediction.MethodsAlgorithms were developed and tested using 2 data sets from previously published investigations. A baseline model estimated pH and P(aCO2) from P(ETCO2) using the previously observed relationship between P(ETCO2) and P(aCO2) or pH (using the Henderson-Hasselbalch equation). We developed a multivariate gaussian process (MGP) model incorporating other available noninvasive measurements.ResultsThe training data set had 2,386 observations from 274 children, and the testing data set had 658 observations from 83 children. The baseline model predicted P(aCO2) within ± 7 mm Hg of the observed P(aCO2) 80% of the time. The MGP model improved this to ± 6 mm Hg. When the MGP model predicted P(aCO2) between 35 and 60 mm Hg, the 80% prediction interval narrowed to ± 5 mm Hg. The baseline model predicted pH within ± 0.07 of the observed pH 80% of the time. The MGP model improved this to ± 0.05.ConclusionsWe have demonstrated a conceptual first step for predictive models that estimate pH and P(aCO2) to facilitate clinical decision making for children with lung injury. These models may have some applicability when incorporated in ventilator protocols to encourage practitioners to maintain permissive hypercapnia when using high ventilator support. Refinement with additional data may improve model accuracy.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.