• Anesthesiology · Jan 1994

    The pharmacokinetics of propofol in children using three different data analysis approaches.

    • B K Kataria, S A Ved, H F Nicodemus, G R Hoy, D Lea, M Y Dubois, J W Mandema, and S L Shafer.
    • Department of Anesthesia, Georgetown University Medical Center, Washington, DC.
    • Anesthesiology. 1994 Jan 1;80(1):104-22.

    BackgroundAccurate dosing of propofol in children requires accurate knowledge of propofol pharmacokinetics in this population. Improvement in pharmacokinetic accuracy may depend on the incorporation of individual patient factors into the pharmacokinetic model or the use of population approaches to estimating the pharmacokinetic parameters. We investigated whether incorporating individual subject covariates (e.g., age, weight, and gender) into the pharmacokinetic model improved the accuracy. We also investigated whether the use of a mixed-effects population model (e.g., the computer program NONMEM) improved the accuracy of the pharmacokinetic model beyond the accuracy obtained with models estimated using two simple approaches.MethodsWe studied 53 healthy, unpremedicated children (28 boys and 25 girls) ranging from 3 to 11 yr of age. Twenty children only received an initial loading dose of 3 mg/kg intravenous propofol. In the remaining 33 children, an initial intravenous propofol dose of 3.5 mg/kg was followed by a propofol maintenance infusion. Six hundred fifty-eight venous plasma samples were gathered and assayed for propofol concentrations. Three different regression techniques were used to analyze the pharmacokinetics: the "standard two-stage" approach, the "naive pooled-data" approach, and the nonlinear mixed-effects modeling approach (as implemented in NONMEM). In both the pooled-data and mixed-effects approaches, individual covariates (age, weight, height, body surface area, and gender) were added to the model to examine whether they improved the quality of the fit. Accuracy of the model was measured by the ability of the model to describe the observed concentrations.ResultsThe pharmacokinetics of propofol in children were best described by a three-compartment pharmacokinetic model. There were no appreciable differences among the pharmacokinetics estimated using the two-stage, pooled-data, and mixed-effects approaches. Weight was a significant covariate, and the weight-proportional model was supported by all three regression approaches. The pharmacokinetic parameters of the weight-proportional pharmacokinetic model (pooled-data approach) were: central compartment (V1) = 0.52 1 x kg-1; rapid-distribution compartment (V2) = 1.01 x kg-1; slow-distribution compartment (V3) = 8.2 1 x kg-1; metabolic clearance (Cl1) = 34 ml.kg-1 x min-1; rapid-distribution clearance (Cl2) = 58 ml.kg-1 x min-1; and slow-distribution clearance (Cl3) = 26 ml.kg-1 x min-1. The inclusion of age as an additional covariate of V2 statistically improved the model, but the actual improvement in the fit was small.ConclusionsThe pharmacokinetics of propofol in children are well described by a standard three-compartment pharmacokinetic model. Weight-adjusting the volumes and clearances significantly improved the accuracy of the pharmacokinetics. Adjusting the pharmacokinetics for inclusion of additional patient covariates or using a mixed-effects model did not further improve the ability of the pharmacokinetic parameters to describe the observations.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…