• Journal of neurotrauma · May 2014

    Testosterone dose-dependently prevents bone and muscle loss in rodents following spinal cord injury.

    • Joshua F Yarrow, Christine F Conover, Luke A Beggs, Darren T Beck, Dana M Otzel, Alexander Balaez, Sarah M Combs, Julie R Miller, Fan Ye, J Ignacio Aguirre, Kathleen G Neuville, Alyssa A Williams, Bryan P Conrad, Chris M Gregory, Thomas J Wronski, Prodip K Bose, and Stephen E Borst.
    • 1 VA Medical Center, Research Service, VA Medical Center , Gainesville, Florida.
    • J. Neurotrauma. 2014 May 1; 31 (9): 834-45.

    AbstractAndrogen administration protects against musculoskeletal deficits in models of sex-steroid deficiency and injury/disuse. It remains unknown, however, whether testosterone prevents bone loss accompanying spinal cord injury (SCI), a condition that results in a near universal occurrence of osteoporosis. Our primary purpose was to determine whether testosterone-enanthate (TE) attenuates hindlimb bone loss in a rodent moderate/severe contusion SCI model. Forty (n=10/group), 14 week old male Sprague-Dawley rats were randomized to receive: (1) Sham surgery (T9 laminectomy), (2) moderate/severe (250 kdyne) SCI, (3) SCI+Low-dose TE (2.0 mg/week), or (4) SCI+High-dose TE (7.0 mg/week). Twenty-one days post-injury, SCI animals exhibited a 77-85% reduction in hindlimb cancellous bone volume at the distal femur (measured via μCT) and proximal tibia (measured via histomorphometry), characterized by a >70% reduction in trabecular number, 13-27% reduction in trabecular thickness, and increased trabecular separation. A 57% reduction in cancellous volumetric bone mineral density (vBMD) at the distal femur and a 20% reduction in vBMD at the femoral neck were also observed. TE dose dependently prevented hindlimb bone loss after SCI, with high-dose TE fully preserving cancellous bone structural characteristics and vBMD at all skeletal sites examined. Animals receiving SCI also exhibited a 35% reduction in hindlimb weight bearing (triceps surae) muscle mass and a 22% reduction in sublesional non-weight bearing (levator ani/bulbocavernosus [LABC]) muscle mass, and reduced prostate mass. Both TE doses fully preserved LABC mass, while only high-dose TE ameliorated hindlimb muscle losses. TE also dose dependently increased prostate mass. Our findings provide the first evidence indicating that high-dose TE fully prevents hindlimb cancellous bone loss and concomitantly ameliorates muscle loss after SCI, while low-dose TE produces much less profound musculoskeletal benefit. Testosterone-induced prostate enlargement, however, represents a potential barrier to the clinical implementation of high-dose TE as a means of preserving musculoskeletal tissue after SCI.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…