• Experimental neurology · Apr 2010

    Clinical Trial

    Time dependent subthalamic local field potential changes after DBS surgery in Parkinson's disease.

    • Manuela Rosa, Sara Marceglia, Domenico Servello, Guglielmo Foffani, Lorenzo Rossi, Marco Sassi, Simona Mrakic-Sposta, Roberta Zangaglia, Claudio Pacchetti, Mauro Porta, and Alberto Priori.
    • Centro Clinico per le Neuronanotecnologie e la Neurostimolazione, Fondazione IRCCS Ospedale Maggiore, Policlinico, Mangiagalli e Regina Elena, Università degli Studi di Milano, Milano, 20122 Milano, Italy.
    • Exp. Neurol. 2010 Apr 1;222(2):184-90.

    AbstractLocal field potentials (LFPs) recorded through electrodes implanted in patients with Parkinson's disease (PD) for deep brain stimulation (DBS) provided physiological information about the human basal ganglia. However, LFPs were always recorded 2-7 days after electrode implantation ("acute" condition). Because changes in the tissue surrounding the electrode occur after DBS surgery and could be relevant for LFPs, in this work we assessed whether impedance and LFP pattern are a function of the time interval between the electrode implant and the recordings. LFPs and impedances were recorded from 11 patients with PD immediately after (T-0h), 2 h after (T-2h), 2 days after (T-48h), and 1 month after (T-30d, "chronic" condition) surgery. Impedances at T-0h were significantly higher than at all the other time intervals (T-2h, p=0.0005; T-48h, p=0.0002; T-30d, p=0.003). Correlated with this change (p=0.005), the low-frequency band (2-7 Hz) decreased at all time intervals (p=0.0005). Conversely, the low- (8-20 Hz) and the high-beta (21-35 Hz) bands increased in time (low-beta, p=0.003; high beta, p=0.022), but did not change between T-48h and T-30d. Our results suggest that DBS electrode impedance and LFP pattern are a function of the time interval between electrode implant and LFP recordings. Impedance decrease could be related to changes in the electrode/tissue interface and in the low-frequency band. Conversely, beta band modulations could raise from the adaptation of the neural circuit. These findings confirm that results from LFP analysis in the acute condition can be extended to the chronic condition and that LFPs can be used in novel closed-loop DBS systems.Copyright 2010 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.