• Neuroscience letters · Jun 2013

    Pinocembrin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress induced apoptosis.

    • Cai-Xia Wu, Rui Liu, Mei Gao, Gang Zhao, Song Wu, Chun-Fu Wu, and Guan-Hua Du.
    • School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
    • Neurosci. Lett. 2013 Jun 24;546:57-62.

    AbstractEndoplasmic reticulum stress (ER stress) is known to play a vital role in mediating ischemic reperfusion damage in brain. Our previous studies showed that pinocembrin alleviated cerebral ischemic injury in ischemia/reperfusion and vascular dementia animal models, but whether attenuation of ER stress-induced apoptosis contributes to the mechanisms remains to be elucidated. In this study, an attempt was therefore made to investigate the modulation effect of pinocembrin on ischemia/reperfusion-induced ER stress in brain. Focal cerebral ischemia/reperfusion rats were induced by middle cerebral artery occlusion (MCAO) for 2h followed by 6h reperfusion. Pinocembrin was administered in different doses (1mg/kg, 3mg/kg, and 10mg/kg, respectively) at the same time of onset of reperfusion. Neurological function and brain infarction were evaluated. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method, and flow cytometer (FCM) were used to investigate cell apoptosis in penumbra cortex. DNA fragmentation assay was also performed using electrophoresis. The expression of ER stress proteins of GRP78, CHOP/GADD153, ATF4, eIF2α phosphorylation was detected by western blot, and caspase-12 was evaluated by immunohistochemical analysis. Our results demonstrate that pinocembrin-treatment (3mg/kg and 10mg/kg) significantly reduced neurological deficit scores, infarct volume, and neuron apoptosis in the ischemia/reperfusion rats. It can also significantly modulate the protein levels by increasing GRP78 (10mg/kg) and attenuating CHOP/GADD153 expression along with caspase-12 activation (3mg/kg and 10mg/kg). At the same time, eIF2α phosphorylation was restrained and the expression of ATF4 was reduced (3mg/kg and 10mg/kg). These results suggest that the attenuation of ER stress induced apoptosis may be involved in the mechanisms of pinocembrin.Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.