• Eur. J. Neurosci. · Jul 2008

    Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4).

    • Mark R Hutchinson, Yingning Zhang, Kimberley Brown, Benjamen D Coats, Mitesh Shridhar, Paige W Sholar, Sonica J Patel, Nicole Y Crysdale, Jacqueline A Harrison, Steven F Maier, Kenner C Rice, and Linda R Watkins.
    • Department of Psychology and The Center for Neuroscience, Campus Box 345, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
    • Eur. J. Neurosci. 2008 Jul 1;28(1):20-9.

    AbstractAlthough activated spinal cord glia contribute importantly to neuropathic pain, how nerve injury activates glia remains controversial. It has recently been proposed, on the basis of genetic approaches, that toll-like receptor 4 (TLR4) may be a key receptor for initiating microglial activation following L5 spinal nerve injury. The present studies extend this idea pharmacologically by showing that TLR4 is key for maintaining neuropathic pain following sciatic nerve chronic constriction injury (CCI). Established neuropathic pain was reversed by intrathecally delivered TLR4 receptor antagonists derived from lipopolysaccharide. Additionally, (+)-naltrexone, (+)-naloxone, and (-)-naloxone, which we show here to be TLR4 antagonists in vitro on both stably transfected HEK293-TLR4 and microglial cell lines, suppressed neuropathic pain with complete reversal upon chronic infusion. Immunohistochemical analyses of spinal cords following chronic infusion revealed suppression of CCI-induced microglial activation by (+)-naloxone and (-)-naloxone, paralleling reversal of neuropathic pain. Together, these CCI data support the conclusion that neuron-to-glia signaling through TLR4 is important not only for initiating neuropathic pain, as suggested previously, but also for maintaining established neuropathic pain. Furthermore, these studies suggest that the novel TLR4 antagonists (+)-naloxone and (-)-naloxone can each fully reverse established neuropathic pain upon multi-day administration. This finding with (+)-naloxone is of potential clinical relevance. This is because (+)-naloxone is an antagonist that is inactive at the (-)-opioid selective receptors on neurons that produce analgesia. Thus, these data suggest that (+)-opioid antagonists such as (+)-naloxone may be useful clinically to suppress glial activation, yet (-)-opioid agonists suppress pain.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.