• AMIA Annu Symp Proc · Jan 2014

    An evaluation of a natural language processing tool for identifying and encoding allergy information in emergency department clinical notes.

    • Foster R Goss, Joseph M Plasek, Jason J Lau, Diane L Seger, Frank Y Chang, and Li Zhou.
    • Tufts Medical Center, Department of Emergency Medicine and Clinical Decision Making, Boston, MA.
    • AMIA Annu Symp Proc. 2014 Jan 1;2014:580-8.

    AbstractEmergency department (ED) visits due to allergic reactions are common. Allergy information is often recorded in free-text provider notes; however, this domain has not yet been widely studied by the natural language processing (NLP) community. We developed an allergy module built on the MTERMS NLP system to identify and encode food, drug, and environmental allergies and allergic reactions. The module included updates to our lexicon using standard terminologies, and novel disambiguation algorithms. We developed an annotation schema and annotated 400 ED notes that served as a gold standard for comparison to MTERMS output. MTERMS achieved an F-measure of 87.6% for the detection of allergen names and no known allergies, 90% for identifying true reactions in each allergy statement where true allergens were also identified, and 69% for linking reactions to their allergen. These preliminary results demonstrate the feasibility using NLP to extract and encode allergy information from clinical notes.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.