• Clin Neurophysiol · Apr 2006

    Quantitative multichannel EEG measure predicting the optimal weaning from ventilator in ICU patients with acute respiratory failure.

    • Christos Papadelis, Nikos Maglaveras, Chrysoula Kourtidou-Papadeli, Panagiotis Bamidis, Maria Albani, Kyriazis Chatzinikolaou, and Konstantinos Pappas.
    • Laboratory of Medical Informatics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece. christos@med.auth.gr
    • Clin Neurophysiol. 2006 Apr 1;117(4):752-70.

    ObjectiveThe objective of this study was to develop a novel quantitative multichannel EEG (qEEG) based analysis method, called Global Field Damping Time (GFDT), in order to detect potential EEG changes of patients admitted to the ICU with acute respiratory failure, and correlate them to the patients' recovery outcome predicting the optimal time-point to disconnect the patient from mechanical ventilation.MethodsTwenty-nine adult patients with acute respiratory failure out of 98 admitted to the Intensive Care Unit of Saint Paul General Hospital were enrolled, and among them only 15 completed the study. The patients were classified in 3 groups according to their outcome after 3 months follow-up. The patients were intubated with fraction of inspired oxygen (FiO2) of 100%. Neurological Deficit Scores (NDS) were measured 24 h after intubation to assess patients' neurological condition. Twenty-four hours after patient's intubation, FiO2 was decreased to 40% (weaning session), followed by a 5 min early recovery session, a 5 min recovery 1 session and a 5 min recovery 2 session. EEG recordings were performed during this experimental procedure. Multichannel EEG segments were processed and fitted into a multivariate autoregressive (mAR) model, and single channel EEG segments into a scalar autoregressive (sAR) model. The mAR and the sAR models of arbitrary order p were decomposed into mp and p oscillators and relaxators, respectively. Damping time of each oscillator and each relaxator, and the Global Field Damping Time (GFDT) as a weighted damping time were estimated for both mAR and sAR models.ResultsA statistically significant increase of mAR model's GFDT during the weaning session was observed in the subjects of all groups. Comparing the 3 patients' groups, statistically significant differences for mAR model's GFDT were observed for the weaning and early recovery session. Linear regression analysis between NDS and mean mAR model's GFDT showed statistical significance during weaning session, early recovery session, and recovery 1 session. There was no statistical significance for SaO2 in the regression analysis with NDS. The sAR model's GFDT presented worst results in comparison with the mAR modelling GFDT in the identification of hypoxic conditions during weaning session and in the discrimination of patients with acute respiratory failure according to their neurological outcome.ConclusionsGlobal Field Damping Time as correlated to the patients' neurological outcome appears to be a simple, compact, and substantial novel indicator of cerebral hypoxia and a potential predictor of the optimal time-point to disconnect the patient from the ventilator.SignificanceQuantitative EEG seems to be an important tool for ICU clinicians assisting them to decide for the patients' optimal time-point to disconnect the patient from the ventilator.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…