-
J. Pharmacol. Exp. Ther. · Sep 2005
Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner.
- Refik Kanjhan, Elizabeth J Coulson, David J Adams, and Mark C Bellingham.
- School of Biomedical Sciences, University of Queensland, Australia. r.kanjhan@uq.edu.au
- J. Pharmacol. Exp. Ther. 2005 Sep 1;314(3):1353-61.
AbstractTertiapin, a short peptide from honey bee venom, has been reported to specifically block the inwardly rectifying K(+) (Kir) channels, including G protein-coupled inwardly rectifying potassium channel (GIRK) 1+GIRK4 heteromultimers and ROMK1 homomultimers. In the present study, the effects of a stable and functionally similar derivative of tertiapin, tertiapin-Q, were examined on recombinant human voltage-dependent Ca(2+)-activated large conductance K(+) channel (BK or MaxiK; alpha-subunit or hSlo1 homomultimers) and mouse inwardly rectifying GIRK1+GIRK2 (i.e., Kir3.1 and Kir3.2) heteromultimeric K(+) channels expressed in Xenopus oocytes and in cultured newborn mouse dorsal root ganglion (DRG) neurons. In two-electrode voltage-clamped oocytes, tertiapin-Q (1-100 nM) inhibited BK-type K(+) channels in a use- and concentration-dependent manner. We also confirmed the inhibition of recombinant GIRK1+GIRK2 heteromultimers by tertiapin-Q, which had no effect on endogenous depolarization- and hyperpolarization-activated currents sensitive to extracellular divalent cations (Ca(2+), Mg(2+), Zn(2+), and Ba(2+)) in defolliculated oocytes. In voltage-clamped DRG neurons, tertiapin-Q voltage- and use-dependently inhibited outwardly rectifying K(+) currents, but Cs(+)-blocked hyperpolarization-activated inward currents including I(H) were insensitive to tertiapin-Q, baclofen, barium, and zinc, suggesting absence of functional GIRK channels in the newborn. Under current-clamp conditions, tertiapin-Q blocked the action potential after hyperpolarization (AHP) and increased action potential duration in DRG neurons. Taken together, these results demonstrate that the blocking actions of tertiapin-Q are not specific to Kir channels and that the blockade of recombinant BK channels and native neuronal AHP currents is use-dependent. Inhibition of specific types of Kir and voltage-dependent Ca(2+)-activated K(+) channels by tertiapin-Q at nanomolar range via different mechanisms may have implications in pain physiology and therapy.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.