• Diabetes Technol. Ther. · Apr 2006

    Case Reports Clinical Trial

    A novel, model-based insulin and nutrition delivery controller for glycemic regulation in critically ill patients.

    • X W Wong, I Singh-Levett, L J Hollingsworth, G M Shaw, C E Hann, T Lotz, J Lin, O S W Wong, and J G Chase.
    • Department of Mechanical Engineering, University of Canterbury, Dunedin, New Zealand.
    • Diabetes Technol. Ther. 2006 Apr 1;8(2):174-90.

    BackgroundCritically ill patients are often hyperglycemic and insulin resistant, as well as highly dynamic. Tight glucose control has been shown to significantly reduce mortality in critical care. A physiological model of the glucose-insulin regulatory system is improved and used to develop an adaptive control protocol utilizing both nutritional and insulin inputs to control hyperglycemia. The approach is clinically verified in a critical care patient cohort.MethodsA simple two-compartment model for glucose rate of appearance in plasma due to stepwise enteral glucose fluxes is developed and incorporated into a previously validated system model. A control protocol modulating intravenous insulin infusion and bolus, with an enteral feed rate, is developed, enabling tight and predictive glycemic regulation to preset targets. The control protocol is adaptive to patient time-variant effective insulin resistance. The model and protocol are verified in seven 10-h and one 24-h proof-of-concept clinical trials. Ethics approval was granted by the Canterbury Ethics Committee.ResultsInsulin requirements varied widely following acute changes in patient physiology. The algorithm developed successfully adapted to patient metabolic status and insulin sensitivity, achieving an average target acquisition error of 9.3% with 90.7% of all targets achieved within +/-20%. Prediction errors may not be distinguishable from sensor measurement errors. Large errors (>20%) are attributable to highly dynamic and unpredictable changes in patient condition.ConclusionsTight, targeted stepwise regulation was exhibited in all trials. Overall, tight glycemic regulation is achieved in a broad critical care cohort with optimized insulin and nutrition delivery, effectively managing glycemia even with high effective insulin resistance.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.