• J Obstet Gynaecol Can · Sep 2011

    Review

    Use of a DNA method, QF-PCR, in the prenatal diagnosis of fetal aneuploidies.

    • Sylvie Langlois and Alessandra Duncan.
    • J Obstet Gynaecol Can. 2011 Sep 1;33(9):955-60.

    ObjectiveTo provide Canadian health care providers with current information on the use of quantitative fluorescent polymerase chain reaction (QF-PCR) or equivalent technology in the prenatal diagnosis of fetal chromosomal abnormalities.OptionsOver the last few decades, prenatal diagnosis of fetal chromosomal abnormalities has relied on conventional cytogenetic analysis of cultured amniocytes, chorionic villi, or fetal blood. In the last few years, the clinical validity of a newer technique, QF-PCR, to detect the common aneuploidies has been reported by a number of investigators. This technique has the advantage of providing rapid results for the diagnosis or exclusion of aneuploidy in chromosomes 13, 18, 21, X or Y. It is now possible to choose standard chromosome analysis or QF-PCR for the prenatal diagnosis of chromosomal abnormalities, or to perform both tests, depending on the clinical indication for testing. This document reviews the clinical utility of QF-PCR and makes recommendations for its use in the care of Canadian patients.EvidenceMedline and PubMed were searched for articles published in English between January 2000 and December 2010 that presented data on the use of QF-PCR versus standard cytogenetic analysis of prenatal samples. A second search was done to identify publications in English that provided results of cytogenetic analysis performed on prenatal samples for women at an increased risk of fetal aneuploidy because of maternal age, abnormal prenatal screening results, or fetal soft ultrasound markers suggestive of an increased risk of aneuploidy. Publications were included if they provided detailed information on the abnormalities detected, regardless of whether or not rapid aneuploidy screening was undertaken. Results were restricted to systematic reviews, randomized controlled trials, and relevant observational studies. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies.ValuesThe quality of evidence was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table 1).Benefits, Harms, And CostsThis guideline promotes the use of a rapid aneuploidy DNA test for women at increased risk of having a pregnancy affected by a common aneuploidy. This will have the benefit of providing rapid and accurate results to women at increased risk of fetal Down syndrome, trisomy 13, trisomy 18, sex chromosome aneuploidy or triploidy. It will also promote better use of laboratory resources and reduce the cost of prenatal diagnosis. However, a small percentage of pregnancies with a potentially clinically significant chromosomal abnormality will remain undetected by QF-PCR but detectable by conventional cytogenetics. Recommendations 1. QF-PCR is a reliable method to detect trisomies and should replace conventional cytogenetic analysis whenever prenatal testing is performed solely because of an increased risk of aneuploidy in chromosomes 13, 18, 21, X or Y. As with all tests, pretest counselling should include a discussion of the benefits and limitations of the test. In the initial period of use, education for health care providers will be required. (II-2A) 2. Both conventional cytogenetics and QF-PCR should be performed in all cases of prenatal diagnosis referred for a fetal ultrasound abnormality (including an increased nuchal translucency measurement > 3.5 mm) or a familial chromosomal rearrangement. (II-2A) 3. Cytogenetic follow-up of QF-PCR findings of trisomy 13 and 21 is recommended to rule out inherited Robertsonian translocations. However, the decision to set up a back-up culture for all cases that would allow for traditional cytogenetic testing if indicated by additional clinical or laboratory information should be made by each centre offering the testing according to the local clinical and laboratory experience and resources. (III-A) 4. Other technologies for the rapid detection of aneuploidy may replace QF-PCR if they offer a similar or improved performance for the detection of trisomy 13, 18, 21, and sex chromosome aneuploidy. (III-A).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.