-
J Clin Monit Comput · Feb 2006
Linear model and algorithm to automatically estimate the pressure limit of pressure controlled ventilation for delivering a target tidal volume.
- Felice Eugenio Agrò, Paolo Cappa, Salvatore Andrea Sciuto, and Sergio Silvestri.
- Department of Anaesthesia, Faculty of Medicine, University Campus Bio-Medico, Via Emilio Longoni 83, 00155 Rome, Italy.
- J Clin Monit Comput. 2006 Feb 1;20(1):1-10.
ObjectiveTo theoretically assess the viability of an automatic procedure to support the anesthesiologist in properly setting mechanical ventilators when the operating conditions are switched from volume controlled to pressure controlled ventilation whilst maintaining the preset tidal volume. The procedure is based on a simple linear model of the ventilator breathing system with constant parameters and utilizes the signals gathered by the ventilator without the need to add further equipment. After a short period of stable volume controlled ventilation with the desired tidal volume, the herewith described algorithm allows the calculation of the value of pressure limit to set in pressure controlled mode which assures the previously settled tidal volume with the same breathing frequency and inspiratory-expiratory time ratio.MethodsThe algorithm allows the online identification of the four parameters necessary for the mathematical model that are obtained by means of a direct comparison between the pressure, flow and volume waveforms generated by the model and the analog signals provided by the ventilator. The theoretical approach was validated by two different ventilators, various settings, two breathing circuits, endotracheal tubes of various sizes and two mechanical simulators of the respiratory system operating in various conditions.ResultsErrors usually less than 5% (p < 0.05) on the target tidal volume were obtained for various settings typically used for adult ventilation in less than 10 s. The theoretical approach shows its limitations (errors of 10+/- 5%, p < 0.05) at high breathing frequencies (30-40 bpm) and low tidal volumes (200-300 ml).ConclusionsThe proposed theoretical approach shows the viability, for adult settings, of one of the simplest mathematical model for mechanical ventilation in order to quickly and safely switch from volume controlled to pressure controlled ventilation. The algorithm could easily be in perspective implemented in the software of the ventilator providing the anesthesiologist with an indication on the value of pressure limit to set in order to safely switch ventilation mode.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.