• J. Am. Coll. Cardiol. · Mar 2013

    Comparative Study

    Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve.

    • Dennis T L Wong, Brian S Ko, James D Cameron, Nitesh Nerlekar, Michael C H Leung, Yuvaraj Malaiapan, Marcus Crossett, Darryl P Leong, Stephen G Worthley, John Troupis, Ian T Meredith, and Sujith K Seneviratne.
    • Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre), Monash University and Monash Heart, Southern Health, Clayton, Australia.
    • J. Am. Coll. Cardiol. 2013 Mar 26;61(12):1271-9.

    ObjectiveThe purpose of this study was to assess the diagnostic accuracy of TAG320 in predicting functional stenosis severity evaluated by fractional flow reserve (FFR).BackgroundCoronary computed tomography angiography (CCTA) has limited specificity for predicting functionally significant stenoses. Recent studies suggest that contrast gradient attenuation along an arterial lesion, or transluminal attenuation gradient (TAG), may provide assessment of functional significance of coronary stenosis. The use of 320-detector row computed tomography (CT), enabling near isophasic, single-beat imaging of the entire coronary tree, may be ideal for TAG functional assessment of a coronary arterial stenosis.MethodsWe assessed the diagnostic accuracy of TAG320 using 320-row CCTA with FFR for the evaluation of functional stenosis severity in consecutive patients undergoing invasive coronary angiography and FFR for stable chest pain. The luminal radiological contrast attenuation (Hounsfield units [HU]) was measured at 5-mm intervals along the artery from ostium to a distal level where the cross-sectional area decreased to <2.0 mm(2). TAG320 was defined as the linear regression coefficient between luminal attenuation and axial distance. Functionally significant coronary stenosis was defined as ≤0.8 on FFR.ResultsIn our cohort of 54 patients (age 62.7 ± 8.7 years, 35 men, 78 vessels), TAG320 in FFR-significant vessels was significantly lower when compared with FFR nonsignificant vessels (-21 [-27; -16] vs. -11 [-16; -3] HU/10 mm, p < 0.001). On receiver-operating characteristic analysis, a retrospectively determined TAG320 cutoff of -15.1 HU/10 mm predicted FFR ≤0.8 with (a bootstrapped resampled) a sensitivity of 77%, specificity of 74%, positive predictive value of 67%, and negative predictive value of 86%. The combined TAG320 and CCTA assessment had an area under the curve of 0.88. There was incremental value of adding TAG320 to CCTA assessment for detection of significant FFR by Wald test (p = 0.0001) and integrated discrimination improvement index (0.11, p = 0.002).ConclusionsAssessment of TAG320 with a 320-detector row CT provides acceptable prediction of invasive FFR and may provide a noninvasive modality for detecting functionally significant coronary stenoses. Combined TAG320 and CCTA assessment may have incremental predictive value over CCTA alone for detecting functionally significant coronary arterial stenoses; however, larger studies are required to determine the benefit of combined TAG320 and CCTA assessment.Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…