• Spine · Apr 2007

    Axonal growth potential of lumbar dorsal root ganglion neurons in an organ culture system: response of nerve growth factor-sensitive neurons to neuronal injury and an inflammatory cytokine.

    • Yasuchika Aoki, Howard S An, Kazuhisa Takahashi, Kei Miyamoto, Mary Ellen Lenz, Hideshige Moriya, and Koichi Masuda.
    • Department of Orthopedic Surgery, Rush Medical College at Rush University Medical Center, Chicago, IL 60612, USA.
    • Spine. 2007 Apr 15;32(8):857-63.

    Study DesignThe axonal growth potential of dorsal root ganglion (DRG) neurons in an organ culture system was investigated.ObjectiveTo examine the effects of neuronal injury and tumor necrosis factor-alpha (TNF-alpha) on the axonal growth potential of 2 types of nociceptive DRG neurons: nerve growth factor (NGF)-sensitive and glial cell line-derived neurotrophic factor (GDNF)-sensitive neurons.Summary Of Background DataNerve ingrowth into the disc is recognized to be one of the causes of discogenic pain. Almost all of these disc-innervating neurons are NGF-sensitive. The axonal growth potential of NGF-sensitive neurons has not been investigated.MethodsAdult Sprague-Dawley rats were used for immunohistochemistry (n = 7) and cell viability studies (n = 6). Bilateral L3-L5 DRGs, which were successfully removed without damage, were noncultured or cultured in serum-free medium containing TNF-alpha at 0, 0.01, 0.1, and 1 ng/mL for 48 hours (n = 5, each treatment). The DRGs were then immunostained for activating transcription factor 3 (ATF3, a marker for injured neurons) or double-stained for growth-associated protein 43 (GAP-43, a marker for axonal growth) with calcitonin gene-related peptide (CGRP, a marker for NGF-sensitive neurons) or isolectin B4 (IB4, a marker for GDNF-sensitive neurons). Cell viability was assessed by a lactate dehydrogenase (LDH) assay and an MTS assay (n = 6, each treatment).ResultsImmunoreactive evidence of injured neurons (ATF3 positive) was frequently observed in cultured DRGs, but never in noncultured DRGs. The percentage of neurons exhibiting axonal growth potential (GAP-43 immunoreactive) was significantly higher for NGF-sensitive neurons than for GDNF-sensitive neurons at any concentration of TNF-alpha. More than 95% of the cultured neurons were viable.ConclusionsThe results suggest that the cultured DRG neurons exhibit pathologic changes similar to those found in injured neurons. NGF-sensitive neurons, which include disc-innervating neurons, may have a greater potential to extend their axons in response to neuronal injury under pathologic conditions in the presence of TNF-alpha than GDNF-sensitive neurons.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.