• Pain · Apr 1998

    Analysis of excitatory amino acid transmission within the rostral ventromedial medulla: implications for circuitry.

    • M M Heinricher and S McGaraughty.
    • Division of Neurosurgery, Oregon Health Sciences University, Portland 97201, USA. mmh@hood.transport.com
    • Pain. 1998 Apr 1;75(2-3):247-55.

    AbstractTwo classes of neurons with distinct responses to opioids have been identified in the rostral ventromedial medulla (RVM), a region with a well-documented role in nociceptive modulation. 'On-cells' are directly inhibited by opioids, and opioids can thus gain access to the modulatory circuitry of the RVM by an action on these neurons. 'Off-cells' are likely to exert a net inhibitory effect on nociceptive processing, and are activated by opioids. Because the opioid activation of off-cells is indirect, it has been proposed that on-cells function as inhibitory interneurons, and that opioid-induced suppression of on-cell firing in turn activates off-cells via disinhibition. The aim of the present study was to test this possibility. We had previously shown that excitatory amino acid (EAA) neurotransmission is crucial to the nocifensor reflex-related on-cell burst. We therefore infused the non-selective EAA receptor antagonist kynurenate (0.5-2 nmol, 200-500 nl) into the RVM while recording activity of on-, off- and neutral cells in lightly anesthetized rats. Kynurenate infusions produced a significant decrease in on-cell firing, with suppression of the on-cell burst. Off-cells nonetheless continued to display a tail flick-related pause in firing. Tail flick latency was used as an index of nociceptive responsiveness, and was unaffected by kynurenate infusions. These results demonstrate that a burst of on-cell firing is not required in order for the off-cell to exhibit a reflex-related pause in discharge, and do not support the proposed crucial role for on-cells as inhibitory interneurons within the RVM. In addition, preferential suppression of on-cell tiring was not associated with an increase in tail flick latency. This suggests that, under the conditions of these experiments, on-cell discharge is not a potent regulator of moment-to-moment variations in nociceptive responsiveness.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.