• Spine · Jul 2002

    Changes in expression of voltage-dependent ion channel subunits in dorsal root ganglia of rats with radicular injury and pain.

    • Masahiro Abe, Takashi Kurihara, Wenhua Han, Kenichi Shinomiya, and Tsutomu Tanabe.
    • Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
    • Spine. 2002 Jul 15;27(14):1517-24; discussion 1525.

    Study DesignChanges in expression of voltage-dependent ion channel subunits were examined in the radicular pain state. Furthermore, antinociceptive effects of gabapentin on radicular pain were compared with effects on peripheral neuropathic pain.ObjectivesTo clarify molecular substrates involved in the development of radicular pain, and to investigate the responsiveness of radicular pain to gabapentin.Summary Of Background DataPeripheral nerve injuries are known to induce dynamic changes of voltage-dependent Na+ and Ca2+ channel subunits expression in dorsal root ganglion neurons. However, the expression profiles of Na+ and Ca2+ channel subunits in the radicular pain state have not been examined.MethodsTwo radicular pain models and one peripheral neuropathic pain model were prepared. By using semiquantitative reverse transcriptase-polymerase chain reaction, the expression levels of several Na+ and Ca2+ channel subunits in the dorsal root ganglions of these pain model rats were investigated. The antinociceptive effects of gabapentin were examined in a behavioral study using the aforementioned pain models.ResultsAll three neuropathic pain operations induced comparable mechanical allodynia and thermal hyperalgesia. The upregulation of the Na(v)1.3 Na+ channel and Ca(v)alpha2delta Ca2+ channel subunits was observed only in the peripheral nerve injury model. A downregulation of the Na(v)1.9 channel was observed in all three pain model rats. A lower dose of gabapentin was significantly more effective in alleviating the mechanical allodynia of rats with radicular pain.ConclusionsThe reduction of Na(v)1.9 found in all three models may link to the neuropathic pain state, including radicular pain. The lower sensitivity to gabapentin in rats with peripheral neuropathic pain might be partly explained by the marked upregulation of Ca(v)alpha2delta in the dorsal root ganglions, suggesting that gabapentin may be more effective in radicular pain treatment.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.