• Arthritis and rheumatism · Nov 2013

    Endothelial injury in a transforming growth factor β-dependent mouse model of scleroderma induces pulmonary arterial hypertension.

    • Emma C Derrett-Smith, Audrey Dooley, Adrian J Gilbane, Sarah L Trinder, Korsa Khan, Reshma Baliga, Alan M Holmes, Adrian J Hobbs, David Abraham, and Christopher P Denton.
    • University College London Medical School, Royal Free Campus, London, UK.
    • Arthritis Rheum. 2013 Nov 1;65(11):2928-39.

    ObjectiveTo delineate the constitutive pulmonary vascular phenotype of the TβRIIΔk-fib mouse model of scleroderma, and to selectively induce pulmonary endothelial cell injury using vascular endothelial growth factor (VEGF) inhibition to develop a model with features characteristic of pulmonary arterial hypertension (PAH).MethodsThe TβRIIΔk-fib mouse strain expresses a kinase-deficient transforming growth factor β (TGFβ) receptor type II driven by a fibroblast-specific promoter, leading to ligand-dependent up-regulation of TGFβ signaling, and replicates key fibrotic features of scleroderma. Structural, biochemical, and functional assessments of pulmonary vessels, including in vivo hemodynamic studies, were performed before and following VEGF inhibition, which induced pulmonary endothelial cell apoptosis. These assessments included biochemical analysis of the TGFβ and VEGF signaling axes in tissue sections and explanted smooth muscle cells.ResultsIn the TβRIIΔk-fib mouse strain, a constitutive pulmonary vasculopathy with medial thickening, a perivascular proliferating chronic inflammatory cell infiltrate, and mildly elevated pulmonary artery pressure resembled the well-described chronic hypoxia model of pulmonary hypertension. Following administration of SU5416, the pulmonary vascular phenotype was more florid, with pulmonary arteriolar luminal obliteration by apoptosis-resistant proliferating endothelial cells. These changes resulted in right ventricular hypertrophy, confirming hemodynamically significant PAH. Altered expression of TGFβ and VEGF ligand and receptor was consistent with a scleroderma phenotype.ConclusionIn this study, we replicated key features of systemic sclerosis-related PAH in a mouse model. Our results suggest that pulmonary endothelial cell injury in a genetically susceptible mouse strain triggers this complication and support the underlying role of functional interplay between TGFβ and VEGF, which provides insight into the pathogenesis of this disease.Copyright © 2013 by the American College of Rheumatology.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.