-
- Miguel A Burguillos, Cecilia Magnusson, Maria Nordin, Andreas Lenshof, Per Augustsson, Magnus J Hansson, Eskil Elmér, Hans Lilja, Patrik Brundin, Thomas Laurell, and Tomas Deierborg.
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
- Plos One. 2013 Jan 1;8(5):e64233.
BackgroundThe use of acoustic forces to manipulate particles or cells at the microfluidic scale (i.e. acoustophoresis), enables non-contact, label-free separation based on intrinsic cell properties such as size, density and compressibility. Acoustophoresis holds great promise as a cell separation technique in several research and clinical areas. However, it has been suggested that the force acting upon cells undergoing acoustophoresis may impact cell viability, proliferation or cell function via subtle phenotypic changes. If this were the case, it would suggest that the acoustophoresis method would be a less useful tool for many cell analysis applications as well as for cell therapy.MethodsWe investigate, for the first time, several key aspects of cellular changes following acoustophoretic processing. We used two settings of ultrasonic actuation, one that is used for cell sorting (10 Vpp operating voltage) and one that is close to the maximum of what the system can generate (20 Vpp). We used microglial cells and assessed cell viability and proliferation, as well as the inflammatory response that is indicative of more subtle changes in cellular phenotype. Furthermore, we adapted a similar methodology to monitor the response of human prostate cancer cells to acoustophoretic processing. Lastly, we analyzed the respiratory properties of human leukocytes and thrombocytes to explore if acoustophoretic processing has adverse effects.ResultsBV2 microglia were unaltered after acoustophoretic processing as measured by apoptosis and cell turnover assays as well as inflammatory cytokine response up to 48 h following acoustophoresis. Similarly, we found that acoustophoretic processing neither affected the cell viability of prostate cancer cells nor altered their prostate-specific antigen secretion following androgen receptor activation. Finally, human thrombocytes and leukocytes displayed unaltered mitochondrial respiratory function and integrity after acoustophoretic processing.ConclusionWe conclude that microchannel acoustophoresis can be used for effective continuous flow-based cell separation without affecting cell viability, proliferation, mitochondrial respiration or inflammatory status.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.