• Zhonghua yi xue za zhi · Oct 2006

    [Effects of transcranial magnetic stimulation on recovery of neural functions and changes of synaptic interface and dendritic structure in the contralateral brain area after cerebral infarction: experiment with rats].

    • Yuan-wu Mei, Chuan-yu Liu, and Xiao-qiao Zhang.
    • Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
    • Zhonghua Yi Xue Za Zhi. 2006 Oct 10;86(37):2639-42.

    ObjectiveTo evaluate the effects of transcranial magnetic stimulation (TMS) on the brain plasticity and its role in functional outcome in cerebral infarction.MethodsTwenty male SD rats underwent suture of the unilateral middle cerebral artery (MCA) so as to establish focal cerebral infarction models and then were randomly divided into 2 equal groups: model group, to be reared in the original living state, and TMS group, given in addition TMS treatment 1 day after infarction 2 times per day and 30 pulses per time for 4 weeks. Twenty-eight days after the rats were killed. Four rats from each group underwent microscopy of the brain to measure the dendritic structure of the pyramidal cells quantitatively. Other 4 rats from each group underwent electron microscopy of the brain to measure the parameters of synaptic interface in the sensorimotor cortex. Neural function scoring was conducted 24 hours after the establishment of model and before being killed.ResultsThere was no significant difference in the neural function 24 h after the establishment of models, however, 28 days after the score of neural function of the TMA group was 0.58 +/- 0.49, significantly lower than that of the model group (0.92 +/- 0.28, P < 0.05). The total dendritic length, number of dendritic branching points, and dendritic density in layer V pyramidal cells within the undamaged motor cortex of the TMS group were 898 microm +/- 127 microm, 6.6 +/- 1.5, and 0.75/microm +/- 0.19/microm, all significantly higher than those of the model group (788 microm +/- 112 microm, 5.8 +/- 1.5, and 0.60/microm +/- 0.16/microm, P < 0.05 or < 0.01). Electron microscopy showed that the synaptic curvatures and post-synaptic density of the TMS group were 1.06 +/- 0.08 and 64 +/- 13 respectively, both significantly higher than those of the model group (1.02 +/- 0.06 and 54 +/- 12 nm respectively, P < 0.05 and P < 0.01), and the synapse cleft width of the TMS group was 19.5 +/- 2.1, significantly narrower than that of the model group (23.3 +/- 2.3, P < 0.01).ConclusionTMS promotes the improvement of neural functions of the rats with cerebral ischemia by the potential mechanism that TMS strengthen the compensatory roles of the synaptic interface and dendritic structure in the undamaged sensorimotor cortex area and increase synaptic plasticity.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.