-
Ann. Allergy Asthma Immunol. · Nov 2013
Automated chart review for asthma cohort identification using natural language processing: an exploratory study.
- Stephen T Wu, Sunghwan Sohn, K E Ravikumar, Kavishwar Wagholikar, Siddhartha R Jonnalagadda, Hongfang Liu, and Young J Juhn.
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota. Electronic address: wu.stephen@mayo.edu.
- Ann. Allergy Asthma Immunol. 2013 Nov 1;111(5):364-9.
BackgroundA significant proportion of children with asthma have delayed diagnosis of asthma by health care providers. Manual chart review according to established criteria is more accurate than directly using diagnosis codes, which tend to under-identify asthmatics, but chart reviews are more costly and less timely.ObjectiveTo evaluate the accuracy of a computational approach to asthma ascertainment, characterizing its utility and feasibility toward large-scale deployment in electronic medical records.MethodsA natural language processing (NLP) system was developed for extracting predetermined criteria for asthma from unstructured text in electronic medical records and then inferring asthma status based on these criteria. Using manual chart reviews as a gold standard, asthma status (yes vs no) and identification date (first date of a "yes" asthma status) were determined by the NLP system.ResultsPatients were a group of children (n = 112, 84% Caucasian, 49% girls) younger than 4 years (mean 2.0 years, standard deviation 1.03 years) who participated in previous studies. The NLP approach to asthma ascertainment showed sensitivity, specificity, positive predictive value, negative predictive value, and median delay in diagnosis of 84.6%, 96.5%, 88.0%, 95.4%, and 0 months, respectively; this compared favorably with diagnosis codes, at 30.8%, 93.2%, 57.1%, 82.2%, and 2.3 months, respectively.ConclusionAutomated asthma ascertainment from electronic medical records using NLP is feasible and more accurate than traditional approaches such as diagnosis codes. Considering the difficulty of labor-intensive manual record review, NLP approaches for asthma ascertainment should be considered for improving clinical care and research, especially in large-scale efforts.Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.