• Ann Biomed Eng · Jan 1987

    Comparative Study

    Intrathoracic pressure fluctuations move blood during CPR: comparison of hemodynamic data with predictions from a mathematical model.

    • H R Halperin, J E Tsitlik, R Beyar, N Chandra, and A D Guerci.
    • Peter Belfer Laboratory for Myocardial Research, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205.
    • Ann Biomed Eng. 1987 Jan 1;15(3-4):385-403.

    AbstractWhether blood flow during cardiopulmonary resuscitation (CPR) results from intrathoracic pressure fluctuations or direct cardiac compression remains controversial. We developed a mathematical model that predicts that blood flow due to intrathoracic pressure fluctuations should be insensitive to compression rate over a wide range but dependent on the applied force and compression duration. If direct compression of the heart plays a major role, however, the model predicts that flow should be dependent on compression rate and force, but above a threshold, insensitive to compression duration. These differences in hemodynamics produced by changes in rate and duration form a basis for determining whether blood flow during CPR results from intrathoracic pressure fluctuations or from direct cardiac compression. The model was validated for direct cardiac compression by studying the hemodynamics of cyclic cardiac deformation following thoracotomy in four anesthetized, 21-32-kg dogs. As predicted by the model, there was no change in myocardial or cerebral perfusion pressures when the duration of compression was increased from 15% to 45% of the cycle at a constant rate of 60/min. There was, however, a significant increase in perfusion pressures when rate was increased from 60 to 150/min at a constant duration of 45%. The model was validated for intrathoracic pressure changes by studying the hemodynamics produced by a thoracic vest (vest CPR) in eight dogs. The vest contained a bladder that was inflated and deflated. Vest CPR changed intrathoracic pressure without direct cardiac compression, since sternal displacement was less than 0.8 cm. As predicted by the model and opposite to direct cardiac compression, there was no change in perfusion pressures when the rate was increased from 60 to 150/min at a constant duration of 45% of the cycle. Manual CPR was then studied in eight dogs. There was no surgical manipulation of the chest. Myocardial and cerebral blood flows were determined with radioactive microspheres and behaved as predicted from the model of intrathoracic pressure, not direct cardiac compression. At nearly constant peak sternal force (378-426 N), flow was significantly increased when the duration of compression was increased from short (13%-19% of the cycle) to long (40%-47%), at a rate of 60/min. Flow was unchanged, however, for an increase in rate from 60 to 150/min at constant compression duration. In addition, myocardial and cerebral flow correlated with their respective perfusion pressures.(ABSTRACT TRUNCATED AT 400 WORDS)

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.