• Bmc Med Res Methodol · Jan 2012

    Randomized Controlled Trial

    Alternative analyses for handling incomplete follow-up in the intention-to-treat analysis: the randomized controlled trial of balloon kyphoplasty versus non-surgical care for vertebral compression fracture (FREE).

    • Jonas Ranstam, Aleksandra Turkiewicz, Steven Boonen, Jan Van Meirhaeghe, Leonard Bastian, and Douglas Wardlaw.
    • RC Syd, Skåne University Hospital in Lund, and Department of Clinical Sciences, Lund University, SE-22185 Lund, Sweden. jonas.ranstam@med.lu.se
    • Bmc Med Res Methodol. 2012 Jan 1;12:35.

    BackgroundClinical trial participants may be temporarily absent or withdraw from trials, leading to missing data. In intention-to-treat (ITT) analyses, several approaches are used for handling the missing information - complete case (CC) analysis, mixed-effects model (MM) analysis, last observation carried forward (LOCF) and multiple imputation (MI). This report discusses the consequences of applying the CC, LOCF and MI for the ITT analysis of published data (analysed using the MM method) from the Fracture Reduction Evaluation (FREE) trial.MethodsThe FREE trial was a randomised, non-blinded study comparing balloon kyphoplasty with non-surgical care for the treatment of patients with acute painful vertebral fractures. Patients were randomised to treatment (1:1 ratio), and stratified for gender, fracture aetiology, use of bisphosphonates and use of systemic steroids at the time of enrolment. Six outcome measures - Short-form 36 physical component summary (SF-36 PCS) scale, EuroQol 5-Dimension Questionnaire (EQ-5D), Roland-Morris Disability (RMD) score, back pain, number of days with restricted activity in last 2 weeks, and number of days in bed in last 2 weeks - were analysed using four methods for dealing with missing data: CC, LOCF, MM and MI analyses.ResultsThere were no missing data in baseline covariates values, and only a few missing baseline values in outcome variables. The overall missing-response level increased during follow-up (1 month: 14.5%; 24 months: 28%), corresponding to a mean of 19% missing data during the entire period. Overall patterns of missing response across time were similar for each treatment group. Almost half of all randomised patients were not available for a CC analysis, a maximum of 4% were not included in the LOCF analysis, and all randomised patients were included in the MM and MI analyses. Improved estimates of treatment effect were observed with LOCF, MM and MI compared with CC; only MM provided improved estimates across all six outcomes considered.ConclusionsThe FREE trial results are robust as the alternative methods used for substituting missing data produced similar results. The MM method showed the highest statistical precision suggesting it is the most appropriate method to use for analysing the FREE trial data.Trial RegistrationThis trial is registered with ClinicalTrials.gov (number NCT00211211).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.