• Scand J Trauma Resus · Jan 2014

    Observational Study

    Anaerobic metabolism associated with traumatic hemorrhagic shock monitored by microdialysis of muscle tissue is dependent on the levels of hemoglobin and central venous oxygen saturation: a prospective, observational study.

    • Filip Burša and Leopold Pleva.
    • Department of anesthesiology and intensive care medicine, University Hospital Ostrava, Faculty of Medicine Universitas Ostrava, 17 listopadu, 1790 Ostrava-Poruba, Czech Republic. bursaf@seznam.cz.
    • Scand J Trauma Resus. 2014 Jan 1;22:11.

    BackgroundTraumatic hemorrhagic shock resulting in tissue hypoxia is a significant cause of morbidity and mortality in polytraumatized patients. Early identification of tissue hypoxia is possible with microdialysis. The aim of this study was to determine the correlation between a marker of tissue hypoxia (L/P; lactate to pyruvate ratio) and selected parameters of systemic oxygen delivery (Hb; hemoglobin) and oxygen extraction (ScvO2; central venous oxygen saturation). We also investigated the severity of tissue hypoxia over the course of care.MethodsAdult patients with traumatic hemorrhagic shock were enrolled in this prospective, observational study. Microdialysis of the peripheral muscle tissue was performed. Demographic data and timeline of care were collected. Tissue lactate, pyruvate, glycerol, glucose levels, hemoglobin, serum lactate and oxygen saturation of the central venous blood (ScvO2) levels were also measured.ResultsThe L/P ratio trend may react to changes in systemic hemoglobin levels with a delay of 7 to 10 hours, particularly when systemic hemoglobin levels are increased by transfusion. Decrease in tissue L/P ratio may react to increase in ScvO2 with a delay of up to 10 hours, and such a decrease may signify elimination of tissue hypoxia after transfusion. We also observed changes in the L/P trend in the 13 hours preceding a change in the hemoglobin level. Fluid administration, which is routinely used as a first-line treatment of hypovolemic shock, can cause hemodilution and decreased hemoglobin. When ScvO2 decreases, increase in L/P ratio may precede the ScvO2 trend by 10 or 11 hours. An increase in the L/P ratio is an early warning sign of insufficient tissue oxygenation and should lead to intensive observation of hemoglobin levels, ScvO2 and other hemodynamic parameters. Patients who were treated more rapidly had lower maximal L/P values and a lower degree of tissue ischemia.ConclusionThe L/P ratio is useful to identify tissue ischemia and can estimate the effectiveness of fluid resuscitation. An increase in the L/P ratio is an early warning sign of inadequate tissue oxygenation and should lead to more detailed hemodynamic and laboratory monitoring. This information cannot usually be obtained from global markers.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.