-
- Chenxi Coco Ning, Sarvesh Logsetty, Shivkumar Ghughare, and Song Liu.
- Department of Textile Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, MB, Canada.
- Burns. 2014 Sep 1;40(6):1164-71.
AbstractTraditional wound dressings, including cotton gauze, absorbent pads and bandages, can cause trauma and pain to wounds during dressing changes, leading to a variety of physical and psychosocial sequelae. The aim of this study was to adapt an in vitro model of adherence to evaluate the effects of various methods to theoretically reduce the adherence of wound dressings. Gelatin in liquid form was cast onto poly(ethylene terephthalate) (PET) fabric and allowed to solidify and progressively dry to simulate wound desiccation in the clinical setting. A 180° peel test of PET from the gelatin slab yielded adherence data of peeling energy. The peeling energy of PET increased with the drying time. It was possible to reduce the force by drying at 75% relative humidity (RH). After drying for 24h, either 500μL of water or surfactant solution was added onto the PET surface (16×60mm(2)). The peeling energy decreased dramatically with wetting and there was no significant difference between water and surfactant. As a long-term strategy for decreasing adherence, a thin layer of polyacrylamide (PAM) hydrogel was deposited onto PET fabric via UV irradiation. This resulted in a much lower peeling energy without severely compromising fabric flexibility. This hydrogel layer could also serve as a reservoir for bioactive and antimicrobial agents which could be sustainably released to create a microbe-free microenvironment for optimized wound healing.Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.