Due to a lack of integration between different sensors, false alarms (FA) in the intensive care unit (ICU) are frequent and can lead to reduced standard of care. We present a novel framework for FA reduction using a machine learning approach to combine up to 114 signal quality and physiological features extracted from the electrocardiogram, photoplethysmograph, and optionally the arterial blood pressure waveform. ⋯ For the ventricular tachycardia alarms, the best FA suppression performance was 30.5% with a TA suppression rate below 1%. To reduce the TA suppression rate to zero, a reduction in FA suppression performance to 19.7% was required.