• Journal of endodontics · Jun 2013

    Hypotonic-induced stretching of plasma membrane activates transient receptor potential vanilloid channels and sodium-calcium exchangers in mouse odontoblasts.

    • Masaki Sato, Ubaidus Sobhan, Maki Tsumura, Hidetaka Kuroda, Manabu Soya, Aya Masamura, Akihiro Nishiyama, Akira Katakura, Tatsuya Ichinohe, Masakazu Tazaki, and Yoshiyuki Shibukawa.
    • Oral Health Science Center, Tokyo Dental College, Chiba, Japan.
    • J Endod. 2013 Jun 1;39(6):779-87.

    IntroductionA number of transient receptor potential (TRP) channels have been identified as membrane-bound sensory proteins in odontoblasts. However, the activation properties of these channels remain to be clarified. The purpose of this study was to investigate hypotonic stimulation-induced Ca(2+) entry via TRP vanilloid subfamily member (TRPV) 1, TRPV2, and TRPV4 channels, which are sensitive to osmotic and mechanical stimuli, and their functional coupling with Na(+)-Ca(2+) exchangers (NCXs) in mouse odontoblast lineage cells.MethodsWe examined TRP channel activity by measuring intracellular-free Ca(2+) concentration by using fura-2 fluorescence and ionic current recordings with whole-cell patch-clamp methods. Protein localization and messenger RNA expression were characterized using immunofluorescence and reverse-transcription polymerase chain reaction analyses.ResultsExtracellular hypotonic solution-induced stretching of plasma membrane resulted in the activation of Ca(2+) influx and inward currents. TRPV1, TRPV2, and TRPV4 channel antagonists inhibited the hypotonic stimulation-induced Ca(2+) entry and currents. Their respective agonists activated Ca(2+) entry. Although the increase in the intracellular free Ca(2+) concentration decayed rapidly after the applications of these TRPV channel agonists, NCX inhibitors significantly prolonged the decay time constant. The messenger RNA expression of TRPV1, TRPV2, and TRPV4 channels; NCX isoforms 2 and 3; and dentin sialophosphoprotein were up-regulated after 24 hours of exposure to the hypotonic culture medium.ConclusionsThese results indicate that stretching of the odontoblast membrane activates TRPV1-, TRPV2-, and TRPV4-mediated Ca(2+) entry, and increased intracellular-free Ca(2+) concentration is extruded via NCXs. These results suggest that odontoblasts can act as sensors that detect stimuli applied to exposed dentin and drive a number of cellular functions including dentinogenesis and/or sensory transduction.Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…