• J. Cell. Biochem. · Jun 2012

    Inhibition of gecko GSK-3β promotes elongation of neurites and oligodendrocyte processes but decreases the proliferation of blastemal cells.

    • Yingjie Wang, Qing Gu, Yingying Dong, Weijuan Zhou, Honghua Song, Yan Liu, Mei Liu, Ying Yuan, Fei Ding, Xiaosong Gu, and Yongjun Wang.
    • Key Laboratory of Neuroregeneration, Nantong University, Nantong 226007, PR China.
    • J. Cell. Biochem. 2012 Jun 1;113(6):1842-51.

    AbstractGSK-3β signaling is involved in regulation of both neuronal and glial cell functions, and interference of the signaling affects central nervous system (CNS) development and regeneration. Thus, GSK-3β was proposed to be an important therapeutic target for promoting functional recovery of adult CNS injuries. To further clarify the regulatory function of the kinase on the CNS regeneration, we characterized gecko GSK-3β and determined the effects of GSK-3β inactivation on the neuronal and glial cell lines, as well as on the gecko tail (including spinal cord) regeneration. Gecko GSK-3β shares 91.7-96.7% identity with those of other vertebrates, and presented higher expression abundance in brain and spinal cord. The kinase strongly colocalized with the oligodendrocytes while less colocalized with neurons in the spinal cord. Phosphorylated GSK-3β (pGSK-3β) levels decreased gradually during the normally regenerating spinal cord ranging from L13 to the 6th caudal vertebra. Lithium injection increased the pGSK-3β levels of the corresponding spinal cord segments, and in vitro experiments on neurons and oligodendrocyte cell line revealed that the elevation of pGSK-3β promoted elongation of neurites and oligodendrocyte processes. In the normally regenerate tails, pGSK-3β kept stable in 2 weeks, whereas decreased at 4 weeks. Injection of lithium led to the elevation of pGSK-3β levels time-dependently, however destructed the regeneration of the tail including spinal cord. Bromodeoxyuridine (BrdU) staining demonstrated that inactivation of GSK-3β decreased the proliferation of blastemal cells. Our results suggested that species-specific regulation of GSK-3β was indispensable for the complete regeneration of CNS.Copyright © 2012 Wiley Periodicals, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…