• Med Eng Phys · Oct 2003

    Comparative Study

    Quantitative assessment of cerebral autoregulation from transcranial Doppler pulsatility: a computer simulation study.

    • M Ursino and M Giulioni.
    • Dipartmento di Elettronica, Informatica e Sistemistica, University of Bologna, Viale Risorgimento 2, Bologna I40136, Italy. mursino@deis.unibo.it
    • Med Eng Phys. 2003 Oct 1;25(8):655-66.

    AbstractTranscranial Doppler (TCD) ultrasonography is largely used today to achieve non-invasive assessment of cerebral autoregulation and cerebrovascular reactivity in neurosurgical patients. Recent experimental and clinical studies suggest that not only the pattern of mean velocity, but also velocity pulse amplitude alterations during changes in cerebral perfusion pressure (CPP) contain information on autoregulation status. The aim of this work is to investigate the relationship between cerebral autoregulation and TCD pulsatility by means of a comprehensive mathematical model of intracranial dynamics and cerebrovascular regulation. Simulation results, performed using different values of the most important clinical parameters of the model (autoregulation strength, cerebrospinal fluid (CSF) outflow resistance and intracranial elastance coefficient) show that velocity pulse amplitude increases with a reduction in CPP in patients with intact autoregulation, whereas changes in velocity pulsatility are modest in patients with weak autoregulation. Finally, velocity pulse amplitude decreases during a CPP reduction in patients with impaired autoregulation. Moreover, the relationship between the velocity pulse amplitude changes and autoregulation strength is almost linear in a wide range of CPP values, and is scarcely affected by changes in CSF circulation and intracranial elasticity. Starting from these results, we suggest a new quantitative index to assess autoregulation strength, i.e. G(aut)% = (s-b)/a, where G(aut)% is autoregulation strength (100% means intact autoregulation, 0% means impaired autoregulation), a approximately -0.03; b approximately 1.5 and s is the slope of the relationship ' percentage changes of velocity pulse amplitude to arterial pressure pulse amplitude vs. CPP changes'.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.