• Anesthesia and analgesia · Jul 2012

    Isoflurane pretreatment preserves adenosine triphosphate-sensitive K(+) channel function in the human artery exposed to oxidative stress caused by high glucose levels.

    • Hiroyuki Kinoshita, Naoyuki Matsuda, Hiroshi Iranami, Koji Ogawa, Noboru Hatakeyama, Toshiharu Azma, Shinji Kawahito, and Mitsuaki Yamazaki.
    • Department of Anesthesiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan. hkinoshi@wakayama-med.ac.jp
    • Anesth. Analg.. 2012 Jul 1;115(1):54-61.

    BackgroundAdenosine triphosphate (ATP)-sensitive K(+) channels contribute to significant regulatory mechanisms related to organ blood flow in both physiological and pathological conditions. High glucose impairs arterial ATP-sensitive K(+) channel activity via superoxide production. However, the effects of anesthetics on this pathological process have not been evaluated in humans. In the present study, we investigated whether pretreatment with the volatile anesthetic isoflurane preserves ATP-sensitive K(+) channel activity in the human artery exposed to oxidative stress caused by high glucose.MethodsAll experiments were performed using human omental arteries without endothelium in the presence of d-glucose (5.5 mmol/L). Some arteries were treated with isoflurane (1.15% or 2.3%) in combination with d- or l-glucose (20 mmol/L) for 60 minutes, and then only isoflurane was discontinued. Relaxation and hyperpolarization of arterial segments in response to an ATP-sensitive K(+) channel opener levcromakalim were evaluated using the isometric force recording or electrophysiological study, respectively. Superoxide production was determined by dihydroethidium fluorescence. Immunohistochemical analysis for a subunit of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase p47phox was performed. Data were evaluated using repeated-measures analysis of variance or a factorial analysis of variance as appropriate, followed by Scheffé test.ResultsThe ATP-sensitive K(+) channel antagonist glibenclamide (10(-6) mol/L) abolished relaxation induced by cumulative addition of levcromakalim (10(-8) to 10(-5) mol/L) in arteries treated with l-glucose (20 mmol/L). Incubation with d-glucose (20 mmol/L) impaired the vasorelaxation induced by levcromakalim. The selective NADPH oxidase NOX2 inhibitor gp91ds-tat (10(-6) mol/L) and pretreatment with isoflurane (1.15% and 2.3%) restored relaxation in response to levcromakalim in arteries treated with d-glucose (20 mmol/L). Isoflurane (2.3%), gp91ds-tat (10(-6) mol/L), and their combination similarly restored hyperpolarization in response to levcromakalim (3 × 10(-6) mol/L) in arteries treated with d-glucose (20 mmol/L). Along with these results, isoflurane (2.3%) reduced superoxide production and the intracellular mobilization of the cytosolic NOX2 subunit p47phox toward smooth muscle cell membrane in arteries treated with d-glucose (20 mmol/L).ConclusionsWe have demonstrated for the first time a beneficial effect from the pretreatment with isoflurane on the isolated human artery. Pretreatment with isoflurane preserves ATP-sensitive K(+) channel activity in the human omental artery exposed to oxidative stress induced by high glucose, whereas the effect seems to be mediated by NADPH oxidase inhibition. Volatile anesthetics may protect human visceral arteries from malfunction caused by oxidative stress.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…