• Circulation research · May 2012

    Role of RhoB in the regulation of pulmonary endothelial and smooth muscle cell responses to hypoxia.

    • Beata Wojciak-Stothard, Lan Zhao, Eduardo Oliver, Olivier Dubois, Yixing Wu, Dimitris Kardassis, Eleftheria Vasilaki, Minzhou Huang, Jane A Mitchell, Louise S Harrington, Harrington Louise, George C Prendergast, and Martin R Wilkins.
    • Centre for Pharmacology and Therapeutics, Experimental Medicine, Imperial College London, London, UK. b.wojciak-stothard@imperial.ac.uk
    • Circ. Res. 2012 May 25;110(11):1423-34.

    RationaleRhoA and Rho kinase contribute to pulmonary vasoconstriction and vascular remodeling in pulmonary hypertension. RhoB, a protein homologous to RhoA and activated by hypoxia, regulates neoplastic growth and vasoconstriction but its role in the regulation of pulmonary vascular function is not known.ObjectiveTo determine the role of RhoB in pulmonary endothelial and smooth muscle cell responses to hypoxia and in pulmonary vascular remodeling in chronic hypoxia-induced pulmonary hypertension.Methods And ResultsHypoxia increased expression and activity of RhoB in human pulmonary artery endothelial and smooth muscle cells, coincidental with activation of RhoA. Hypoxia or adenoviral overexpression of constitutively activated RhoB increased actomyosin contractility, induced endothelial permeability, and promoted cell growth; dominant negative RhoB or manumycin, a farnesyltransferase inhibitor that targets the vascular function of RhoB, inhibited the effects of hypoxia. Coordinated activation of RhoA and RhoB maximized the hypoxia-induced stress fiber formation caused by RhoB/mammalian homolog of Drosophila diaphanous-induced actin polymerization and RhoA/Rho kinase-induced phosphorylation of myosin light chain on Ser19. Notably, RhoB was specifically required for hypoxia-induced factor-1α stabilization and for hypoxia- and platelet-derived growth factor-induced cell proliferation and migration. RhoB deficiency in mice markedly attenuated development of chronic hypoxia-induced pulmonary hypertension, despite compensatory expression of RhoA in the lung.ConclusionsRhoB mediates adaptational changes to acute hypoxia in the vasculature, but its continual activation by chronic hypoxia can accentuate vascular remodeling to promote development of pulmonary hypertension. RhoB is a potential target for novel approaches (eg, farnesyltransferase inhibitors) aimed at regulating pulmonary vascular tone and structure.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…