• Journal of neurochemistry · Mar 2013

    Suppression of pain-related behavior in two distinct rodent models of peripheral neuropathy by a homopolyarginine-conjugated CRMP2 peptide.

    • Weina Ju, Qi Li, Yohance M Allette, Matthew S Ripsch, Fletcher A White, and Rajesh Khanna.
    • Department of Pharmacology and Toxicology, Paul and Carole Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA.
    • J. Neurochem. 2013 Mar 1;124(6):869-79.

    AbstractThe N-type voltage-gated calcium channel (CaV2.2) is a clinically endorsed target in chronic pain treatments. As directly targeting the channel can lead to multiple adverse side effects, targeting modulators of CaV2.2 may prove better. We previously identified ST1-104, a short peptide from the collapsin response mediator protein 2 (CRMP2), which disrupted the CaV2.2-CRMP2 interaction and suppressed a model of HIV-related neuropathy induced by anti-retroviral therapy but not traumatic neuropathy. Here, we report ST2-104 -a peptide wherein the cell-penetrating TAT motif has been supplanted with a homopolyarginine motif, which dose-dependently inhibits the CaV2.2-CRMP2 interaction and inhibits depolarization-evoked Ca(2+) influx in sensory neurons. Ca(2+) influx via activation of vanilloid receptors is not affected by either peptide. Systemic administration of ST2-104 does not affect thermal or tactile nociceptive behavioral changes. Importantly, ST2-104 transiently reduces persistent mechanical hypersensitivity induced by systemic administration of the anti-retroviral drug 2',3'-dideoxycytidine (ddC) and following tibial nerve injury (TNI). Possible mechanistic explanations for the broader efficacy of ST2-104 are discussed.© 2012 International Society for Neurochemistry.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.