• Anesthesiology · Aug 2009

    Beneficial effect of propofol on arterial adenosine triphosphate-sensitive K+ channel function impaired by thromboxane.

    • Masanori Haba, Hiroyuki Kinoshita, Naoyuki Matsuda, Toshiharu Azma, Keiko Hama-Tomioka, Noboru Hatakeyama, Mitsuaki Yamazaki, and Yoshio Hatano.
    • Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan.
    • Anesthesiology. 2009 Aug 1;111(2):279-86.

    BackgroundIt is not known whether thromboxane A2 impairs adenosine triphosphate (ATP)-sensitive K channel function via increased production of superoxide in blood vessels and whether propofol as a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor restores this modification.MethodsRat aortas without endothelium were used for isometric force recording, measurements of membrane potential, and superoxide production and Western immunoblotting. Vasorelaxation to an ATP-sensitive K channel opener levcromakalim was obtained during contraction to phenylephrine (3 x 10(-7) M) or a thromboxane A2 analogue U46619 (3 x 10(-7) M). In some experiments, aortas were incubated with an ATP-sensitive K channel antagonist glibenclamide, a superoxide inhibitor Tiron, a nonselective NADPH oxidase inhibitor apocynin, a hydrogen peroxide scavenger catalase, a xanthine oxidase inhibitor allopurinol, a thromboxane receptor antagonist SQ29548 or propofol (3 x 10(-7) to 3 x 10(-6) M).ResultsLevcromakalim-induced vasorelaxation was abolished by glibenclamide in rings contracted with either vasoconstrictor agent. Tiron, apocynin, and propofol, but not catalase, augmented the vasodilator response as well as the hyperpolarization by levcromakalim in aortas contracted with U46619. Tiron, apocynin, SQ29548, and propofol, but not allopurinol, similarly reduced in situ levels of superoxide within aortic vascular smooth muscle exposed to U46619. Protein expression of a NADPH oxidase subunit p47phox increased in these arteries, and this augmentation was abolished by propofol.ConclusionsThromboxane receptor activation induces vascular oxidative stress via NADPH oxidase, resulting in the impairment of ATP-sensitive K channel function. Propofol reduces this stress via inhibition of a NADPH oxidase subunit p47phox and, therefore, restores ATP-sensitive K channel function.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.