• IEEE Trans Biomed Eng · Feb 2009

    CPR artifact removal in ventricular fibrillation ECG signals using Gabor multipliers.

    • Tobias Werther, Andreas Klotz, Günther Kracher, Michael Baubin, Hans G Feichtinger, Hermann Gilly, and Anton Amann.
    • Faculty of Mathematics, University of Vienna, A-1090 Vienna, Austria. tobias.werther@univie.ac.at
    • IEEE Trans Biomed Eng. 2009 Feb 1;56(2):320-7.

    Background And ObjectiveWe present an algorithm for discarding cardiopulmonary resuscitation (CPR) components from ventricular fibrillation ECG (VF ECG) signals and establish a method for comparing CPR attenuation on a common dataset. Removing motion artifacts in ECG allows for uninterrupted rhythm analysis and reduces "hands-off" time during resuscitation.Methods And ResultsThe current approach assumes a multichannel setting where the information of the corrupted ECG is combined with an additional pressure signal in order to estimate the motion artifacts. The underlying algorithm relies on a localized time-frequency transformation, the Gabor transform, that reveals the perturbation components, which, in turn, can be attenuated. The performance of the method is evaluated on a small set of test signals in the form of error analysis and compared to two well-established CPR removal algorithms that use an adaptive filtering system and a state-space model, respectively.ConclusionWe primarily point out the potential of the algorithm for successful artifact removal; however, on account of the limited set of human VF and animal asystole CPR signals, we refrain from a statistical analysis of the efficiency of CPR attenuation. The results encourage further investigations in both the theoretical and the clinical setup.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.