-
- Catherine C Price, Jared J Tanner, Ilona Schmalfuss, Cynthia Wilson Garvan, Peter Gearen, David Dickey, Kenneth Heilman, David L McDonagh, David J Libon, Christiana Leonard, Dawn Bowers, and Terri G Monk.
- From the Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida (C.C.P., J.J.T., D.D., and D.B.); Joint Appointment, Department of Anesthesiology, University of Florida, Gainesville, Florida (C.C.P.); Department of Radiology, University of Florida, Gainesville, Florida (I.S.); Department of Radiology, North Florida South Georgia Veteran Association, Gainesville, Florida (I.S.); Health Science Center, University of Florida, Gainesville, Florida (C.W.G.); Department of Orthopedic Surgery, University of Florida, Gainesville, Florida (P.G. and D.B.); Department of Neurology, University of Florida, Gainesville, Florida (K.H. and T.G.M.); Department of Anesthesiology, Duke University, Durham, North Carolina (D.L.M.); Department of Neurology, Drexel University, Philadelphia, Pennsylvania (D.J.L.); and Department of Neuroscience, University of Florida, Gainesville, Florida (C.L.).
- Anesthesiology. 2014 Mar 1; 120 (3): 601-13.
BackgroundTotal knee arthroplasty improves quality of life but is associated with postoperative cognitive dysfunction in older adults. This prospective longitudinal pilot study with a parallel control group tested the hypotheses that (1) nondemented adults would exhibit primary memory and executive difficulties after total knee arthroplasty, and (2) reduced preoperative hippocampus/entorhinal volume would predict postoperative memory change, whereas preoperative leukoaraiosis and lacunae volumes would predict postoperative executive dysfunction.MethodsSurgery (n = 40) and age-education-matched controls with osteoarthritis (n = 15) completed pre- and postoperative (3 weeks, 3 months, and 1 yr) memory and cognitive testing. Hypothesized brain regions of interest were measured in patients completing preoperative magnetic resonance scans (surgery, n = 31; control, n = 12). Analyses used reliable change methods to identify the frequency of cognitive change at each time point.ResultsThe incidence of postoperative memory difficulties was shown with delay test indices (i.e., story memory test: 3 weeks = 17%, 3 months = 25%, 1 yr = 9%). Postoperative executive difficulty with measures of inhibitory function (i.e., Stroop Color Word: 3 weeks = 21%, 3 months = 22%, 1 yr = 9%). Hierarchical regression analysis assessing the predictive interaction of group (surgery, control) and preoperative neuroanatomical structures on decline showed that greater preoperative volumes of leukoaraiosis/lacunae were significantly contributed to postoperative executive (inhibitory) declines.ConclusionsThis pilot study suggests that executive and memory declines occur in nondemented adults undergoing orthopedic surgery. Severity of preoperative cerebrovascular disease may be relevant for understanding executive decline, in particular.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.