• Anesthesia and analgesia · Jul 2012

    Biophysical and pharmacological properties of glucagon-like peptide-1 in rats under isoflurane anesthesia.

    • Takashi Kawano, Katsuya Tanaka, Haidong Chi, Satoru Eguchi, Fumimoto Yamazaki, Sonoe Kitamura, Naoko Kumagai, and Masataka Yokoyama.
    • Department of Anesthesiology and Critical Care Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan. takashika@kochi-u.ac.jp
    • Anesth. Analg. 2012 Jul 1; 115 (1): 62-9.

    BackgroundGlucagon-like peptide-1 (GLP-1) increases insulin secretion and has an important role in maintaining glucose homeostasis. In this study, we evaluated the biophysical and pharmacological properties of GLP-1 by performing in vivo and in vitro experiments to determine the applicability of GLP-1 in glycemic control in rats under isoflurane anesthesia.MethodsLevels of portal GLP-1, insulin, and glucose and dipeptidyl peptidase-4 activity were measured in the basal fasting state and after gastric glucose load before, during, and after exposure to 30% O(2) in air (control) or 1.4% isoflurane in a mixture of 30% O(2) and air. The direct effects of isoflurane on GLP-1 secretion were assessed in human enteroendocrine NCI-H716 cells. Insulin release from isolated pancreatic islets was measured using a radioimmunoassay. Single pancreatic β-cell membrane potentials were recorded using whole-cell current-clamp patches perforated by β-escin.ResultsIn fasting rats, inhalation of isoflurane led to a decrease in the basal levels of GLP-1 but did not affect insulin and glucose levels. Levels of GLP-1, insulin, and glucose increased after gastric administration of glucose in control rats. However, isoflurane attenuated the glucose-induced increase in GLP-1 and insulin levels and increased plasma glucose levels. In contrast, isoflurane did not affect dipeptidyl peptidase-4 activity before or after gastric glucose loading. Isoflurane (0.35 mM) inhibited GLP-1 release in NCI-H716 cells; this finding was similar to that observed in in vivo studies. In perifusion experiments, isoflurane (0.35 mM) inhibited glucose-induced insulin release, whereas exogenous GLP-1 (10 nM) enhanced insulin release. Importantly, combined administration of isoflurane and GLP-1 enhanced both phases of glucose-induced insulin release to an extent similar to that achieved with GLP-1 alone. Whole-cell patches showed that exposure to GLP-1 (10 nM) led to nearly complete restoration of glucose-stimulated depolarization that had been suppressed by isoflurane (0.35 mM).ConclusionsGLP-1 secretion is impaired during isoflurane anesthesia. However, our study showed that the insulinotropic action of GLP-1 was not affected by isoflurane. Furthermore, exposure to GLP-1 increased the membrane activity of pancreatic β-cells, preventing isoflurane-induced impairment of glucose-induced insulin secretion. These results support the hypothesis that GLP-1-based therapy may be a useful approach for achieving intraoperative glycemic control.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.