-
- Andrew W Kirkpatrick, Christine Vis, Mirette Dubé, Susan Biesbroek, Chad G Ball, Jason Laberge, Jonas Shultz, Ken Rea, David Sadler, John B Holcomb, and John Kortbeek.
- Department of Surgery, Calgary, Alberta, Canada; Department of Regional Trauma Services, Calgary, Alberta, Canada; Department of Foothills Medical Centre and the University of Calgary Calgary, Alberta, Canada; Alberta Health Services, Alberta, Canada. Electronic address: Andrew.kirkpatrick@albertahealthservices.ca.
- Injury. 2014 Sep 1; 45 (9): 1413-21.
AbstractTraumatic injury is the leading cause of potentially preventable lost years of life in the Western world and exsanguination is the most potentially preventable cause of post-traumatic death. With mature trauma systems and experienced trauma centres, extra-abdominal sites, such as the pelvis, constitute the most frequent anatomic site of exsanguination. Haemorrhage control for such bleeding often requires surgical adjuncts most notably interventional radiology (IR). With the usual paradigm of surgery conducted within an operating room and IR procedures within distant angiography suites, responsible clinicians are faced with making difficult decisions regarding where to transport the most physiologically unstable patients for haemorrhage control. If such a critical patient is transported to the wrong suite, they may die unnecessarily despite having potentially salvageable injuries. Thus, it seems only logical that the resuscitative operating room of the future would have IR capabilities making it the obvious geographic destination for critically unstable patients, especially those who are exsanguinating. Our trauma programme recently had the opportunity to conceive, design, build, and operationalise a purpose-designed hybrid trauma operating room, designated as the resuscitation with angiographic percutaneous techniques and operative resuscitation (RAPTOR) suite, which we believe to be the first such resource designed primarily to serve the exsanguinating trauma patient. The project was initiated after consultations between the trauma programme and private philanthropists regarding the greatest potential impacts on regional trauma care. The initial capital construction costs were thus privately generated but coincided with a new hospital wing construction allowing the RAPTOR to be purpose-designed for the exsanguinating patient. Many trauma programmes around the world are now starting to navigate the complex process of building new facilities, or else retrofitting existing ones, to address the need for single-site flexible haemorrhage control. This manuscript therefore describes the many considerations in the design and refinement of the physical build, equipment selection, human factors evaluation of new combined treatment paradigms, and the final introduction of a RAPTOR protocol in order that others may learn from our initial efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.