• Neurotoxicology · Nov 2007

    Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain.

    • Pushpinder Kaur, Bishan Radotra, Ranjana W Minz, and K D Gill.
    • Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
    • Neurotoxicology. 2007 Nov 1;28(6):1208-19.

    AbstractThe present study elucidates a possible mechanism by which chronic organophosphate exposure (dichlorvos 6 mg/kg bw, s.c. for 12 weeks) causes neuronal degeneration. Mitochondria, as a primary site of cellular energy generation and oxygen consumption represent itself a likely target for organophosphate poisoning. Therefore, the objective of the current study was planned with an aim to investigate the effect of chronic dichlorvos exposure on mitochondrial calcium uptake, oxidative stress generation and its implication in the induction of neuronal apoptosis in rodent model. Mitochondrial preparation from dichlorvos (DDVP) treated rat brain demonstrated significant increase in mitochondrial Ca(2+) uptake (644.2 nmol/mg protein). Our results indicated decreased mitochondrial electron transfer activities of cytochrome oxidase (complex IV) along with altered mitochondrial complex I, and complex II activity, which might have resulted from elevated mitochondrial calcium uptake. The alterations in the mitochondrial calcium uptake and mitochondrial electron transfer enzyme activities in turn might have caused an increase in malondialdehyde, protein carbonyl and 8-hydroxydeoxyguanosine formation as a result of enhanced lipid peroxidation, and as well as protein and mtDNA oxidation. All this could have been because of enhanced oxidative stress, decreased GSH levels and also decreased Mn-SOD activity in the mitochondria isolated from dichlorvos treated rat brain. Thus, chronic organophosphate exposure has the potential to disrupt cellular antioxidant defense system which in turn triggers the release of cytochrome c from mitochondria to cytosol as well as caspase-3 activation in dichlorvos treated rat brain as revealed by immunoblotting experiments. Low-level long-term organophosphate exposure finally resulted in oligonucleosomal DNA fragmentation, a hallmark of apoptosis. These studies provide an evidence of impaired mitochondrial bioenergetics and apoptotic neuronal degeneration after chronic low-level exposure to dichlorvos.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.