• Mutation research · Sep 2008

    Review

    Clinical genetics of functionally mild non-coding GTP cyclohydrolase 1 (GCH1) polymorphisms modulating pain and cardiovascular risk.

    • Alexandra Doehring, Charalambos Antoniades, Keith M Channon, Irmgard Tegeder, and Jörn Lötsch.
    • pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, D-60590 Frankfurt am Main, Germany.
    • Mutat. Res. 2008 Sep 1;659(3):195-201.

    AbstractGuanosine triphosphate cyclohydrolase 1 (GCH1) is the first enzyme in the tetrahydrobiopterin (BH4) biosynthesis, an important co-factor for the formation of nitric oxide, biogenic amines and serotonin. Hereditary diseases such as DOPA-responsive dystonia and atypical phenylketonuria are known to be caused by coding or splice-site mutations in the GCH1 gene, leading mostly to a dominant negative enzyme. However, recent evidence suggests a clinical genetics of GCH1 beyond these hereditary loss-of-function diseases. That is, a non-coding GCH1 haplotype has been associated with reduced pain hypersensitivity and with altered vascular endothelial function. Moreover, the presence of the non-coding c.*243C>T variant in the 3'-untranslated region (3'-UTR) of the GCH1 gene has been associated with mildly increased heart rate and blood pressure. Here, we show that carriers of the pain-protective GCH1 haplotype also carry the c.*243C>T variant and vice versa. We thus demonstrate that apart from the coding or splice-site variants causing DOPA-responsive dystonia and atypical phenylketonuria, there is a common clinically relevant GCH1 genetics that is so far known to be related to unfavorable changes of endothelial function and a reduced risk for chronic pain.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        

    hide…