• Circ Cardiovasc Imaging · Sep 2012

    Comparative Study

    Evaluation of aortic valve stenosis using cardiovascular magnetic resonance: comparison of an original semiautomated analysis of phase-contrast cardiovascular magnetic resonance with Doppler echocardiography.

    • Carine Defrance, Emilie Bollache, Nadjia Kachenoura, Ludivine Perdrix, Nataliya Hrynchyshyn, Eric Bruguière, Alban Redheuil, Benoit Diebold, and Elie Mousseaux.
    • INSERM U678/UPMC Universite Paris 6, Hôpital Européen Georges Pompidou, 20 Rue Leblanc, Paris, France.
    • Circ Cardiovasc Imaging. 2012 Sep 1;5(5):604-12.

    BackgroundAccurate quantification of aortic valve stenosis (AVS) is needed for relevant management decisions. However, transthoracic Doppler echocardiography (TTE) remains inconclusive in a significant number of patients. Previous studies demonstrated the usefulness of phase-contrast cardiovascular magnetic resonance (PC-CMR) in noninvasive AVS evaluation. We hypothesized that semiautomated analysis of aortic hemodynamics from PC-CMR might provide reproducible and accurate evaluation of aortic valve area (AVA), aortic velocities, and gradients in agreement with TTE.Methods And ResultsWe studied 53 AVS patients (AVA(TTE)=0.87±0.44 cm(2)) and 21 controls (AVA(TTE)=2.96±0.59 cm(2)) who had TTE and PC-CMR of aortic valve and left ventricular outflow tract on the same day. PC-CMR data analysis included left ventricular outflow tract and aortic valve segmentation, and extraction of velocities, gradients, and flow rates. Three AVA measures were performed: AVA(CMR1) based on Hakki formula, AVA(CMR2) based on continuity equation, AVA(CMR3) simplified continuity equation=left ventricular outflow tract peak flow rate/aortic peak velocity. Our analysis was reproducible, as reflected by low interoperator variability (<4.56±4.40%). Comparison of PC-CMR and TTE aortic peak velocities and mean gradients resulted in good agreement (r=0.92 with mean bias=-29±62 cm/s and r=0.86 with mean bias=-12±15 mm Hg, respectively). Although good agreement was found between TTE and continuity equation-based CMR-AVA (r>0.94 and mean bias=-0.01±0.38 cm(2) for AVA(CMR2), -0.09±0.28 cm(2) for AVA(CMR3)), AVA(CMR1) values were lower than AVA(TTE) especially for higher AVA (mean bias=-0.45±0.52 cm(2)). Besides, ability of PC-CMR to detect severe AVS, defined by TTE, provided the best results for continuity equation-based methods (accuracy >94%).ConclusionsOur PC-CMR semiautomated AVS evaluation provided reproducible measurements that accurately detected severe AVS and were in good agreement with TTE.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…