• Thorax · May 2012

    Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure.

    • Michael R Knowles, Margaret W Leigh, Johnny L Carson, Stephanie D Davis, Sharon D Dell, Thomas W Ferkol, Kenneth N Olivier, Scott D Sagel, Margaret Rosenfeld, Kimberlie A Burns, Susan L Minnix, Michael C Armstrong, Adriana Lori, Milan J Hazucha, Niki T Loges, Heike Olbrich, Anita Becker-Heck, Miriam Schmidts, Claudius Werner, Heymut Omran, Maimoona A Zariwala, and Genetic Disorders of Mucociliary Clearance Consortium.
    • University of North Carolina, Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, CB# 7248, 7123 Thurston-Bowles Bldg, Chapel Hill, NC 27599-7248, USA. knowles@med.unc.edu
    • Thorax. 2012 May 1;67(5):433-41.

    RationalePrimary ciliary dyskinesia (PCD) is an autosomal recessive, genetically heterogeneous disorder characterised by oto-sino-pulmonary disease and situs abnormalities (Kartagener syndrome) due to abnormal structure and/or function of cilia. Most patients currently recognised to have PCD have ultrastructural defects of cilia; however, some patients have clinical manifestations of PCD and low levels of nasal nitric oxide, but normal ultrastructure, including a few patients with biallelic mutations in dynein axonemal heavy chain 11 (DNAH11).ObjectivesTo test further for mutant DNAH11 as a cause of PCD, DNAH11 was sequenced in patients with a PCD clinical phenotype, but no known genetic aetiology.Methods82 exons and intron/exon junctions in DNAH11 were sequenced in 163 unrelated patients with a clinical phenotype of PCD, including those with normal ciliary ultrastructure (n=58), defects in outer and/or inner dynein arms (n=76), radial spoke/central pair defects (n=6), and 23 without definitive ultrastructural results, but who had situs inversus (n=17), or bronchiectasis and/or low nasal nitric oxide (n=6). Additionally, DNAH11 was sequenced in 13 subjects with isolated situs abnormalities to see if mutant DNAH11 could cause situs defects without respiratory disease.ResultsOf the 58 unrelated patients with PCD with normal ultrastructure, 13 (22%) had two (biallelic) mutations in DNAH11; and two patients without ultrastructural analysis had biallelic mutations. All mutations were novel and private. None of the patients with dynein arm or radial spoke/central pair defects, or isolated situs abnormalities, had mutations in DNAH11. Of the 35 identified mutant alleles, 24 (69%) were nonsense, insertion/deletion or loss-of-function splice-site mutations.ConclusionsMutations in DNAH11 are a common cause of PCD in patients without ciliary ultrastructural defects; thus, genetic analysis can be used to ascertain the diagnosis of PCD in this challenging group of patients.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.