• Journal of critical care · Apr 2014

    Prediction equation to estimate dead space to tidal volume fraction correlates with mortality in critically ill patients.

    • Robert L Vender, Manuel F Betancourt, Erik B Lehman, Christopher Harrell, Dan Galvan, and David C Frankenfield.
    • Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA. Electronic address: rvender@psu.edu.
    • J Crit Care. 2014 Apr 1;29(2):317.e1-3.

    ObjectiveThe measurement of dead space to tidal volume fraction (Vd/Vt) using various methodologies has been shown to be a reliable predictor of mortality in critically ill patients. In this study, we evaluated the correlation of a validated equation using clinically available information to predict calculation of Vd/Vt with clinically relevant outcome parameters in patients requiring mechanical ventilation.MethodsCalculations of Vd/Vt were obtained based upon a previously published prediction equation for dead space ventilation fraction: Vd/Vt = 0.320 + 0.0106 (Paco2--end-tidal carbon dioxide measurement) + 0.003 (respiratory rate per minute) + 0.0015 (age in years) on study days 1, 3 to 4, 6 to 9, and 14 after initiation of mechanical ventilation in adult patients who satisfied 1 of the 3 study defined diseases: (1) acute bacterial pneumonia, (2) acute respiratory distress syndrome, or (3) cystic fibrosis.ResultsUsing the final/last available time point calculation of Vd/Vt, a significant difference was observed between survivors and nonsurvivors both in relation to mean and median values (56.5% vs 71.2% and 56.0% vs 65.0%, respectively). In addition, sequential analyses of Vd/Vt calculations over time also demonstrated a statistically significant difference between survivors and nonsurvivors for days 6 to 9.ConclusionIn this study-specific population of critically ill patients, the prediction equation of Vd/Vt using clinically available parameters correlates with mortality. In addition, we provide a simple method to estimate Vd/Vt that can be potentially applicable to all critically ill intensive care unit patients.Copyright © 2014 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…